
Latency Constrained Aggregation in Sensor

Networks ⋆

Luca Becchetti1, Peter Korteweg2, Alberto Marchetti-Spaccamela1, Martin
Skutella3, Leen Stougie2,4, and Andrea Vitaletti1

1 University of Rome “La Sapienza”
2 TU Eindhoven

3 University of Dortmund
4 CWI Amsterdam

Abstract. A sensor network consists of sensing devices which may ex-
change data through wireless communication; sensor networks are highly
energy constrained since they are usually battery operated. Data aggre-
gation is a possible way to save energy consumption: nodes may delay
data in order to aggregate them into a single packet before forward-
ing them towards some central node (sink). However, many applications
impose constraints on the maximum delay of data; this translates into
latency constraints for data arriving at the sink.
We study the problem of data aggregation to minimize maximum energy
consumption under latency constraints on sensed data delivery, and we
assume unique communication paths that form an intree rooted at the
sink. We prove that the off-line problem is strongly NP-hard and we
design a 2-approximation algorithm. The latter uses a novel rounding
technique.
Almost all real life sensor networks are managed on-line by simple dis-
tributed algorithms in the nodes. In this context we consider both the
case in which sensor nodes are synchronized or not. We assess the perfor-
mance of the algorithm by competitive analysis. We also provide lower
bounds for the models we consider, in some cases showing optimality of
the algorithms we propose. Most of our results also hold when minimizing
the total energy consumption of all nodes.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract De-
vices]: Modes of Computation — Online Computation; G.2.2 [Discrete Math-
ematics]: Graph Theory — Graph Algorithms, Network Problems, Trees.

General Terms: Discrete algorithms for communication, discrete optimization
and approximation.

Additional Keywords and Phrases: Wireless sensor networks, data aggregation,
competitive analysis, distributed algorithms.

⋆ A preliminary version of this article appeared in Springer Lecture Notes on Computer
Science, Volume 4168 (2006).

1 Introduction

A sensor network consists of sensor nodes and one or more central nodes or sinks.
Sensor nodes are able to monitor events, to process the sensed information and
to communicate the sensed data. Sinks are powerful base stations which gather
data sensed in the network; sinks either process this data or act as gateways to
other networks. Sensors send data to the sink through multi-hop communication.

A particular feature of sensor nodes is that they are battery powered, making
sensor networks highly energy constrained. Replacing batteries on hundreds of
nodes, often deployed in inaccessible environments, is infeasible or too costly.
Therefore, a key challenge in a sensor network is the reduction of energy con-
sumption and the most natural objective is to minimize the maximum energy
consumption over all nodes. Energy consumption can be divided into three do-
mains: sensing, communication and data processing [1]. Communication is most
expensive because a sensor node spends most of its energy in data transmis-
sion and reception [12]. This motivates the study of techniques to reduce overall
data communication, possibly exploiting processing capabilities available at each
node. Data aggregation is one such technique. It consists of aggregating redun-
dant or correlated data in order to reduce the overall size of sent data, thus
decreasing the network traffic and energy consumption.

Most literature on sensor networks assumes total aggregation, i.e. data pack-
ets are assumed to have the same size and aggregation of two or more incoming
packets at a node results in a single outgoing packet. Observe that even if this
might be considered a simplistic assumption, it allows us to provide an upper
bound on the expected benefits of data aggregation in terms of power consump-
tion. We refer here to a selection of papers, focused on the algorithmic side of
the problem [3, 11, 14–17]. However, these papers mainly focus on empirical and
technical aspects

We concentrate on data aggregation in sensor networks under constraints on
the latency of sensed events; this means that data should be communicated to
the sinks within a specified time after being sensed. Preliminary results are given
in [13, 21], but formal proofs of their results are not provided.

Time synchronization, in the sense of the existence of a common clock for the
nodes, may or may not be a requirement of the sensor network. In typical applica-
tions a time stamp forms a crucial part of the sensed data. Time synchronization
in wireless sensor networks has been studied in [6–8, 10]. Time synchronization
introduces overhead and in some scenarios, a synchronous model, in which all
nodes share the same clock, may not be a requirement. We consider both the
synchronous model and the asynchronous model. We restrict ourselves to the
analysis of deterministic algorithms.

A sensor network is naturally represented by a graph whose nodes are the
sensors and whose arcs are the wireless communication links. Data aggregation,
latency constraints and energy savings, give rise to a large variety of graph
optimization problems depending on the following issues.

2

- communication energy and time can be seen as functions of the size of the
packet and the communication arc. Typically, these are concave functions ex-
hibiting economies of scale in the size of the packets sent.

- The latency may depend on the (types of) sensor data or on the sensor nodes.

- Sensor networks can be modeled as synchronous or asynchronous systems.

- Data is delivered to one or more sinks.

- The overlay routing paths connecting nodes to the sinks can be fixed a priori,
(e.g. a tree or a chain) or may also be chosen as part of the optimization process.

- There might be several objective functions; the most natural ones are to min-
imize the maximum energy consumption over all nodes or to maximize the
amount of sensed data arriving at the sinks with a given energy constraint.

- Sensor networks are usually managed in a distributed on-line way thus reflecting
most sensor networks in practice.

By considering the above issues, we formulate the sensor problem in a com-
binatorial optimization setting, which allows us to derive, what we believe to be,
the first results on worst-case analysis for on-line algorithms on wireless sensor
networks, as opposed to mainly empirical current results.

We concentrate here on a basic subclass of latency constrained data aggrega-
tion problems. We assume that communication times and communication costs,
in terms of energy consumption, are functions of the arcs only, modeling the
situation of total aggregation, while the objective is to minimize the maximum
communication cost per node over all nodes. There is only one sink and the com-
munication paths from the nodes to the sink are unique, forming an intree with
the sink as the root. The tree is a typical routing topology in sensor networks;
see [4, 11, 15, 18, 19].

In spirit [4] come closest to our paper. The authors considered optimization
of TCP acknowledgement (ACK) in a multicasting tree. The problem is a data
aggregation problem. However, energy consumption is not an issue in this prob-
lem and latency is considered as a cost instead of a constraint, resulting in an
objective of minimizing the sum of the total number of communications and the
total latency of the messages.

In [5] the authors studied the optimal aggregation policy in a single-hop sce-
nario (i.e. the graph is a star). Namely an aggregator performs a request and
starts waiting for answers from a set of sources. The time for each source to
return its data to the aggregator is independent and identically distributed ac-
cording to a known distribution F . The main differences with our paper are that
they assume that F is known, and they focus on a single-hop scenario.

The outline of our paper is the following. In Section 2 we formalize the
problem; for a thorough understanding of the problem we have studied both the
off-line and the on-line version of the problem, although the latter version is the
relevant one in practice.

In Section 3 we show that the off-line problem is NP-hard and we give a 2-
approximate algorithm. We remark that our approximate solution is based on a

3

new rounding technique of the LP-relaxation of an Integer Linear Programming
formulation of the problem, which might be useful for other applications.

In Section 4 we describe the distributed on-line problem, both in the syn-
chronous and the asynchronous setting. Our main results are:
(a) Distributed synchronous. We present a O(log U)-competitive algorithm, where
U is the ratio between the maximum and the minimum time that a packet can
wait in its route toward the sink. We also show a lower bound of Ω(log U) on
the competitive ratio, whence the proposed algorithm is best possible up to a
multiplicative constant.
(b) Distributed asynchronous. We give an O(δ log U)-competitive algorithm, where
δ is the depth of the tree, which belongs to a class of algorithms for which we
can prove a lower bound of Ω(δ) on the competitive ratio.

In Section 5 we discuss several extensions to the basic model. We demonstrate
that most of our results also hold, when minimizing the total energy consumption
of all nodes, or for concave costs functions, or when aggregation is possible only
if messages are released within the same region.

Finally, in Section 6 we summarize our results and suggest possibilities for
future research in this rich research area.

2 The sensor problem formalized

We study sensor networks D = (V,A), which are intrees rooted at a sink node s ∈
V . Nodes represent sensors and arcs represent the possibility of communication
between two sensors. Given an arc a ∈ A we denote its head and tail nodes by
head(a) and tail(a), respectively.

Over time, n messages, N := {1, . . . , n}, arrive at nodes and have to be sent
to the sink. Message j arrives at its release node vj at its release date rj and
must arrive at the sink via the unique path from vj to s at or before its due date
dj . Thus, each message is completely defined by the triple (vj , rj , dj). Unless
otherwise stated we assume that messages are indexed by increasing due date,
i.e., d1 ≤ d2 ≤ · · · ≤ dn. We refer to Lj := dj − rj as the latency of message j.

A packet is a set of messages which are sent simultaneously along an arc. More
precisely, each initial message is sent as one packet. Recursively, two packets
j and ℓ can be aggregated at a node v. The resulting packet has due date
d = min{dj , dℓ}. This definition naturally extends to the case of more packets
aggregated together.

Communication of a message along an arc takes time and energy (cost). In
this paper we assume that the communication time τ : A → R>0 and commu-
nication cost c : A → R>0 are independent of packet size. We often refer to the
communication cost of a node as the communication cost of its unique outgoing
arc. This models the situation in which all messages have more or less the same
size and where total aggregation is possible, as discussed in the introduction. For
v ∈ V , let τv and cv be, respectively, the total communication time and total
communication cost on the path from v to s. For message j and node u on the
path from vj to s, we define transit interval Ij(u) as the time interval during

4

which message j can transit at node u: Ij(u) := [rj + τvj
− τu, dj − τu]. In par-

ticular, Ij(s) = [r′j , dj], where r′j := rj + τvj
is the earliest possible arrival time

of j at s. We abbreviate Ij(s) to Ij and call it the arrival interval of message
j. We also write |I| for the length of interval I; note that |Ij(u)| = |Ij | for all j
and for all u on the path from vj to u.

Finally, we define δ := maxv τv as the depth of the network in terms of
the communication time. All logarithms in this paper are base 2. In this paper
when we refer to O(log p) for some parameter p it is to be understood that
O(log p) = O(1) if p = 1.

The objective of the sensor problem is to send all messages to the sink in
such a way as to minimize the maximum communication cost per node, while
satisfying the latency restrictions. Given that communication costs are indepen-
dent of the size of packets sent, but linear in the number of packets sent, it is
clearly advantageous to aggregate messages into packets at tail nodes of arcs.

3 The off-line problem

In this paragraph we give some positive and negative results on the off-line
sensor problem. We prove that the problem is strongly NP-hard. We formulate
the problem as an ILP and we design a novel rounding technique for its LP-
relaxation, yielding a 2-approximation.

We start by proving some properties of optimal off-line solutions.

Lemma 1. There exists a minimum cost solution such that:

(i) whenever two messages are present together at the same node, they stay
together until they reach the sink;

(ii) a message never waits at an intermediate node, i.e., a node different from
its release node and the sink;

(iii) the time when a packet of messages arrives at the sink is the earliest due
date of any message in that packet.

Proof. (i): Repeatedly apply the argument that whenever two messages are to-
gether at the same node but split up afterwards, keeping the one arriving later
at the sink with the other message does not increase cost.

(ii): Use (i) and repeatedly apply the following argument. Whenever a packet
of messages arrives at an intermediate node and waits there, changing the solu-
tion by shifting this waiting time to the tail node of the incoming arc does not
increase cost.

(iii): Follows similarly as (ii) by interpreting the time between the arrival of
a packet at the sink and earliest due date as waiting time. ⊓⊔

3.1 NP-hardness

Theorem 1. The off-line sensor problem is strongly NP-hard.

5

v

v1

v2

vn

s

Fig. 1.

(3i + 2)(n + 1)

zi

xk
i

xj
i

(3i + 1)(n + 1) + j (3i + 2)(n + 1) + j
(3i + 1)(n + 1) + k3i(n + 1) + k

(3i + 1)(n + 1)3i(n + 1) 3(i + 1)(n + 1) − 1

Fig. 2. Arrival intervals corresponding to clause Ci. In the depicted example, the clause
has the form Ci = (Xj ∨ ¬Xk).

Proof. We prove the theorem using a reduction from the Satisfiability Problem.
Given an instance of SAT with n boolean variables X1, . . . ,Xn and m clauses
C1, . . . , Cm, we construct the intree on n + 2 nodes depicted in Figure 1.

The nodes v1, . . . , vn on the left correspond to variables X1, . . . ,Xn. There
is one intermediate node v and the sink s on the right. The communication
costs of the arcs are determined later. The communication times of all arcs are
zero, whence the earliest arrival times of the messages coincide with their release
dates.

For clause Ci we define a time interval T (Ci) = [3i(n+1), 3(i+1)(n+1)−1]
and a message zi = (v, ri, di) := (v, (3i+1)(n+1), (3i+2)(n+1)), i = 1, . . . ,m.
Notice that the arrival interval Izi

= [ri, di] ⊂ T (Ci). We also define two dummy
messages z0 := (v, 0, 0) and zm+1 := (v, 3(m+1)(n+1), 3(m+1)(n+1)). Notice
the crucial fact |Iz0

| = |Izm+1
| = 0, leaving no choice in sending z0 and zm+1.

If variable Xj occurs unnegated in clause Ci, we create a message xj
i =

(vj , r
j
i , d

j
i) := (vj , (3i + 1)(n + 1) + j, (3i + 2)(n + 1) + j). If Xj occurs negated

in clause Ci, we create message xj
i := (vj , 3i(n + 1) + j, (3i + 1)(n + 1) + j). If

Xj does not occur in Ci no message xj
i is created. Notice that in both cases the

arrival time interval Ij
i ⊂ T (Ci). If Xj does not occur in Ci no message xj

i is
created. An illustration is given in Figure 2.

6

3(m + 1)(n + 1)

xj
i1

xj
i2

xj
i3

0 rj
i1

dj
i1

rj
i2

dj
i2

rj
i3

dj
i3

Fig. 3. Arrival intervals of messages with release node vj . In the depicted example,
variable Xj occurs in three clauses Ci1 , Ci2 , and Ci3 . Arrival intervals of the four
auxiliary messages are represented by dashed arrows.

The rough idea behind the reduction is the following: in an optimal solution,
message xj

i is either sent at its release or at its due date (the reason for this will

become clear later). Moreover, sending xj
i at its release (due) date means setting

Xj to true (false). Thus, message zi can join message xj
i at node v if and only if

the value of variable Xj makes clause Ci true.

We continue with the description of the instance. Let ij1 < · · · < ijkj
denote

the indices of the clauses in which variable Xj occurs. We create kj +1 additional
messages released at node vj . The release and due dates of these messages are
chosen such that the 2kj + 1 arrival time intervals formed by the release and
due dates of all messages released at node vj form a partition of the interval
[0, 3(m + 1)(n + 1)]; see Figure 3.

We will demonstrate that for appropriately chosen cost functions any SAT
problem reduces to our sensor problem. We define the cost function by c(vj , v) =
(maxl kl + 1)/(kj+1) for j = 1, . . . , n, and c(v, s) = (maxl kl + 1)/(

∑n
l=1 kl + 2).

Claim 1. Every optimal solution to the subinstance obtained by ignoring mes-
sages z1, . . . , zm has the following properties:

(a) The cost of each node is maxl kl + 1;
(b) A message with release node vj is either sent from vj at its release date or

at its due date, j = 1, . . . , n;
(c) For each fixed j = 1, . . . , n, either all messages xj

i (i = ij1, . . . , i
j
kj

) are sent
at their release dates or all of them are sent at their due dates.

Proof of Claim 1. Let us consider a solution which minimizes the cost of nodes
vj . Since the 2kj + 1 arrival time intervals of messages with release node vj

form a partition of [0, 3(m + 1)(n + 1)], at most one xj
i -message and one of the

auxiliary messages can be aggregated into a packet, which then has to be sent at
the single intersection point of the two arrival time intervals. Thus the minimal
number of packets that have to be sent from node vj is kj +1, i.e. kj pair-packets
and one packet containing a single message. Hence the minimal cost of node vj

is c(vj , v)(kj + 1) = maxl kl + 1 for all nodes vj .
Each pair-packet is sent at the common release and due date of its two

messages and by construction of these dates no two pair-packets emanating
from different nodes can be aggregated into a single packet at node v. Thus,

7

there are
∑n

l=1 kl pair-packets passing v. And we have the two dummy messages
z0 and zm+1, which are sent from node v at times 0 and 3(m + 1)(n + 1).
Pair-packets cannot be aggregated with these dummy messages but each single-
message-packet can be sent at time 0 or 3(m + 1)(n + 1) and hence it may
join dummy message z0 or zm+1 at node v. This gives a total of

∑n
l=1 kl + 2

packets passing v. Thus, the cost of node v is c(v, s)(
∑n

l=1 kl + 2) = maxl kl + 1.
Notice that a single-message-packet contains either the first or the last auxiliary
message released at node vj . If the single-message-packet is the first auxiliary

message then all pair-packets are sent on the due date of the xj
i -message in the

packet. Otherwise, all pair-packets are sent on the release date of the xj
i -message

in the packet.
Thus, we have constructed a solution which satisfies properties (a),(b) and

(c). As the cost of node vj is at least maxl kl + 1 the solution is an optimal
solution. From the construction of this solution it can easily be verified that
any solution which violates property (a),(b) or (c) has a node with a cost which
exceeds maxl kl + 1. ⊓⊔

This claim suffices to prove the following claim which in its turn implies the
proof of the theorem directly.

Claim 2. The sensor problem has a solution with maximum cost at most
maxl kl + 1 if and only if the underlying instance of SAT is satisfiable.

Proof of Claim 2. Given a satisfying assignment for the SAT instance, a feasible
solution to the sensor problem can be obtained as follows. Notice that in the
construction of an optimal solution in the proof of Claim 1, for each j, there
is a choice for the set of messages corresponding to Xj , to send either dummy
message z0 separately at time 0 or the dummy message zm+1 separately at time
3(m + 1)(n + 1). In both cases the cost of sending all messages corresponding to
the variables and z0 and zm+1 is maxl kl + 1 for each node. We make the choice
now by sending zm+1 separately if Xj is true in the satisfying assignment and
z0 separately if Xj is false.

We claim that message zi corresponding to clause Ci, i = 1, . . . ,m, can be
aggregated at v with one of the pair-packets corresponding to a variable in the
clause. Suppose that clause Ci is satisfied due to variable Xj . If Xj appears

unnegated in Ci (thus Xj is true), then the pair-packet containing message xj
i

is sent at time rj
i := (3i + 1)(n + 1) + j ∈ [ri, di], and message zi can join this

packet at no additional cost. Similarly, if Xj appears negated at Ci (thus Xj is

false) then xj
i is sent at dj

i := (3i + 1)(n + 1) + j ∈ [ri, di]. This concludes the
proof of the “if” part.

It follows from Claim 1 that any feasible solution with maximum cost maxl

kl + 1 yields an assignment of values to the boolean variables X1, . . . ,Xn: vari-
able Xj is set to true (false), if all messages xj

i , i = ij1, . . . , i
j
kj

, are sent at their

release (due) dates. It also follows from Claim 1 that in an optimal solution
message zi, i = 1, . . . ,m should not cause additional cost, therefore it must join
one of the packets starting at a node vj . Due to the construction of the instance,

8

this is only possible if the value of variable Xj causes clause Ci to be satisfied.
This concludes the proof of the “only if” part for this objective function. ⊓⊔

3.2 A 2-approximation

We give an ILP-formulation of the problem, based on Lemma 1, and show that
rounding the optimal solution of the LP-relaxation yields a 2-approximation
algorithm. For every message-arc pair {i, a}, we introduce a binary decision
variable xia, which is set to 1 if and only if arc a is used by some message j
which arrives at s at time di. We use the notation jmin for the smallest index i
such that di ≥ r′j ; that is, jmin := min{i : di ≥ r′j}. We use aj to denote the first
arc on the unique path from vj to s. The LP relaxation of the sensor problem is

min z
s.t. z ≥ c(a)

∑n
i=1 xia ∀a ∈ A,∑j

i=jmin
xiaj

> 1 ∀ 1 ≤ j ≤ n,

xia > xia′ ∀ 1 ≤ i ≤ n ∀ a, a′ ∈ A with head(a′) = tail(a),
xia ∈ {0, 1} ∀ 1 ≤ i ≤ n ∀ a ∈ A.

(1)

The first set of constraints ensures that z is at least the communication cost of
any node. The second set of constraints forces each message to leave its release
node in time to reach the sink before its due date. By the third set of constraints
a message does not wait at intermediate nodes.

In the following lemma we develop a tool for rounding the corresponding
LP-relaxation, which is obtained by replacing the integrality constraints with
non-negativity constraints xia > 0.

Lemma 2. Let α1, . . . , αn ∈ R>0 and β1, . . . , βn ∈ {0, 1} with

∑k
i=j αi > 1 =⇒

∑k
i=j βi > 1 ∀1 ≤ k ≤ n ∀1 ≤ j ≤ k. (2)

By decreasing some of the βi’s from 1 to 0, one can enforce the inequality

∑n
i=1 βi 6 2

∑n
i=1 αi (3)

while maintaining property (2). Moreover, this can be done in linear time.

Proof. Consider the βi’s in order of increasing index. If βi = 1, then round it
down to 0, unless this yields a violation of (2). It is not difficult to see that this
greedy algorithm can be implemented to run in linear time. It remains to be
proven that inequality (3) holds for the resulting numbers β1, . . . , βn.

For h ∈ {1, . . . , n}, let h̄ := min{i > h | βi = 1}; if βi = 0 for all i > h or
h = n, then h̄ := n + 1. Similarly, let h := max{i < h | βi = 1}; if βi = 0 for all
i < h or h = 1, then h := 0. We prove the following generalization of (3):

h∑

i=1

βi 6 2
h̄−1∑

i=1

αi ∀ 1 ≤ h ≤ n. (4)

9

By contradiction, consider the smallest index h violating (4). Since h is chosen
minimally, it must hold that βh = 1; rounding βh down to 0 would yield a
violation of (2). In particular this would yield

h̄−1∑

i=h+1

αi > 1 (5)

while
∑h̄−1

i=h+1 βi = 0 . Notice that h > 1, since, by choice of h,

h∑

i=1

βi > 2

h̄−1∑

i=1

αi

(5)

> 2 .

Thus, βh = βh = 1. We get a contradiction to the choice of h:

h∑

i=1

βi =

h−1∑

i=1

βi + 2
(4)

6 2

h−1∑

i=1

αi + 2
(5)

6 2

h−1∑

i=1

αi + 2

h̄−1∑

i=h+1

αi 6 2

h̄−1∑

i=1

αi .

The first inequality follows from (4) since (h − 1) = h. ⊓⊔

Theorem 2. There is a polynomial time 2-approximation algorithm for the sen-
sor problem on intree D = (V,A).

Proof. We round optimal (fractional) solution (x, z) of the LP relaxation of (1) to
an integral solution (x̄, z̄). Consider the arcs in order of non-decreasing distance
from s. For arc a with head(a) = s, set x̂ia = 1 ∀ i = 1, . . . , n. Modify these
values to x̄1a, . . . , x̄na by applying Lemma 2 to x1a, . . . , xna and x̂1a, . . . , x̂na.

For an arc a′ with larger distance to s, take the arc a with head(a′) = tail(a)
and set x̂ia′ := x̄ia ∀i = 1, . . . , n. We also modify these values into x̄1a′ , . . . , x̄na′

by applying Lemma 2 to the values x1a′ , . . . , xna′ and x̂1a′ , . . . , x̂na′ . Premise (2)
of Lemma 2 is satisfied for x1a′ , . . . , xna′ and x̂1a′ , . . . , x̂na′ since (2) holds for
x1a, . . . , xna and x̄1a, . . . , x̄na and since xia′ ≤ xia.

By construction, the final solution (x̄, z̄) is feasible if we choose z̄ = 2z. ⊓⊔

4 The distributed on-line problem

We consider a class of distributed on-line models, in which nodes communicate
independently of each other, while messages are released over time. Each node
is equipped with an algorithm, which determines at what times the node sends
its packets to the next node on the path to the sink. The input of each node’s
algorithm at any time t is restricted to the packets that have been released at
or forwarded from that node in the period [0, t].

We assume that all nodes are equipped with a clock to measure the latency
of messages. We distinguish two distributed on-line models: In the synchronous
model all nodes are equipped with a common clock, i.e. the times indicated at all

10

clocks are identical. A common clock may facilitate synchronization of actions in
various nodes. In the asynchronous model there is no such common clock; still,
the duration of the time unit is assumed to be the same for all nodes.

We also assume in both models that each node v knows its total communica-
tion time τv to the sink. Moreover, for the asynchronous model we assume that
all communication times τ(a) are equal, and without loss of generality we set
τ(a) = 1 ∀a ∈ A.

4.1 The synchronous model

For the synchronous model we propose an algorithm, which we prove to be
best possible (up to a multiplicative constant) within the class of deterministic
algorithms. The algorithm is based on the following simple lemma.

Lemma 3. Given any interval [a, b], a ≥ 0, such that [a, b] contains at least
one integer. Let i∗ = max{i ∈ N | ∃k ∈ N : k2i ∈ [a, b]}, then k∗ for which
k∗2i∗ ∈ [a, b] is odd and unique. ⊓⊔

Proof. Assume that k12
i∗ ∈ [a, b] and k22

i∗ ∈ [a, b], with k1 < k2. We may
assume that k2 = k1+1, for if k2 > k1+1, then obviously also (k1+1)2i∗ ∈ [a, b].
This means that either k1 or k2 is even. Suppose this is k1 (if k2 is even the
arguments are analogous). Then, k1/2 ∈ N and (k1/2)2i∗+1 ∈ [a, b], contradicting
the definition of i∗. ⊓⊔

We use notation t(I) to represent the unique point in the interval I = [a, b]
which equals k∗2i∗ with i∗ and k∗ as defined in Lemma 3. Note, that we assume
I to contain at least one integer.

Algorithm:CommonClock (CC): Message j is sent from vj at time
t(Ij) − τvj

to arrive at s at time t(Ij) unless some other packet passes
vj in the interval [rj , t(Ij) − τvj

], in which case j is aggregated and the
packet is forwarded directly.

First we derive a bound on the competitive ratio of CC for instances in which
the arrival intervals Ij differ by at most a factor 2 in length.

Lemma 4. If there exists an i ∈ N such that 2i−1 < |Ij | ≤ 2i for all messages
j, then CC has a competitive ratio of at most 3.

Proof. We will prove that the communication cost of each arc in the CC-solution
is at most 3 times the communication cost of this arc in the optimal solution.

Assume that in an optimal solution packets arrive at s at times t1 < · · · < tℓ.
Let N∗

h be the packet arriving at th at s. Since th ∈ Ij ∀j ∈ N∗
h and |Ij | ≤ 2i ∀j,

we have Ij ⊂ [th−2i, th+2i] =: I ∀j ∈ N∗
h , and |I| = 2·2i. If th = k2i then in the

CC-solution all messages in N∗
h may arrive at s at times th, th − 2i or th + 2i. If

th 6= k2i then I contains two different multiples of 2i, say k2i and (k+1)2i, such
that k2i < th < (k + 1)2i. In this case, since |Ij | > 2i−1 ∀j, we have ∀j ∈ N∗

h

11

that Ij ∩{k2i, k2i +2i−1, (k +1)2i} 6= ∅. Lemma 3 implies that in a CC-solution
every message j ∈ N∗

h arrives at s at one of {k2i, k2i + 2i−1, (k + 1)2i}. Hence,
∀h = 1, . . . , ℓ, all messages in N∗

h arrive at s at at most 3 distinct time instants
in the CC-solution. CC does not delay messages at intermediate nodes. This
implies that the arcs used by messages in N∗

h are traversed by these messages at
most 3 times in the CC-solution, proving the lemma. ⊓⊔

Let U =
maxj |Ij |

max{1,minj |Ij |}
.

Theorem 3. CC is Θ(log U)-competitive.

Proof. For each i ∈ N with log(max{1,minj |Ij |}) ≤ i ≤ ⌈log(maxj |Ij |)⌉, CC

sends the messages in Ni := {j ∈ N | 2i−1 < |Ij | ≤ 2i}, at a cost of no more
than 3 times the optimum, by Lemma 4. This proves O(log U)-competitiveness
if minj |Ij | ≥ 1. In case minj |Ij | = 0 we observe that restricted to the class of
messages N0 = {j ∈ N | |Ij | = 0} CC’s cost equals the optimal cost, because
there is no choice for these messages.

To prove Ω(log U) consider a chain of 2n+1 nodes u1, . . . , u2n+1 = s for some
n ∈ N. Take τ(a) = 1 and c(a) = 1 ∀a. For j = 1, . . . , n, vj = u2j , rj = 0, and
dj = 2n+1−1. Hence r′j = 2n+1−2j = k2j for some odd k ∈ N and |Ij | = 2j −1.
Therefore, CC makes each message j arrive at s at time r′j , no two messages are

aggregated, and the cost is
∑n

j=1(2
n+1 − 2j) = (n − 1)2n+1 + 2. In an optimal

solution all messages are aggregated into a single packet arriving at s at time
2n+1 − 1 at a cost of 2n+1 − 2. Notice that U = 2n − 1 in this case. ⊓⊔

The following theorem shows that CC is best possible (up to a multiplicative
constant).

Theorem 4. Any deterministic synchronous algorithm is Ω(log U)-competitive.

Proof. Consider an intree of depth δ = 2n+1 with n the number of messages,
and where each node, except the leaves, has indegree n. We assume τ(a) = 1 for
all a ∈ A. For any on-line algorithm we will construct an adversarial sequence
of n messages all with latency L = δ, such that there exists a node at which the
adversary can aggregate all messages in a single packet, but at which none of
them is aggregated by the on-line algorithm. Using a similar argument as in the
proof of Lemma 1 (i) the fact that all messages can be aggregated in a single
packet implies that there exists a solution such that every node sends at most
one packet, hence the cost of the adversarial solution is 1, whereas the cost of
the on-line algorithm is n.

Fix any on-line algorithm. Given an instance of the problem, let Wj(u) be the
time interval message j spent at node u by application of the algorithm, i.e. the
waiting time interval of message j on u. We denote its length by |Wj(u)|. Note
that

∑
u |Wj(u)| ≤ |Ij | for each message j. We notice that the waiting time of a

message in a node can be influenced by the other messages that are present at
that node or have passed that node before. Since the algorithms are distributed
the waiting time of a message in a node is not influenced by any message that
will pass the node in the future.

12

The adversary chooses the source node vj with total communication time
τvj

:= δ − 2j from s, for j = 1, . . . , n, so that |Ij | = 2j . Thus, U = 2n−1 = δ/4.
The choice of the exact position of vj and the release time rj is made sequentially
and, to facilitate the exposition, described in a backward way starting with
message n. The proof follows rather directly from the following claim.

Claim. For any set of messages {k, . . . , n} the adversary can maintain the prop-
erties:
(i) all messages in {k, . . . , n} pass a path pk with 2k nodes;
(ii) Ik(u) =

⋂
j≥k Ij(u) ∀u ∈ pk;

(iii) if k < n, then Wk+1(u)
⋂

Ik(u) = ∅ ∀u ∈ pk;
(iv) if k < n, then Wi(u)

⋂
Wj(u) = ∅ ∀u ∈ pk, i = k, . . . , n, j > i.

We notice that for any message j and any node u on the path from vj to s,
Wj(u) may have length 0 but is never empty; it contains at least the departure
time of message j from node u.

Note that properties (i) and (ii) for k = 1 imply that all messages can indeed
be aggregated into one packet, hence as argued above, the adversarial solution
has a cost of 1. Properties (iv) and (i) for k = 1 imply that the on-line algorithm
sends all messages separately over a common path with 2 nodes, yielding a cost
of n. This proves the theorem.

We prove the claim by induction. The basis of the induction, k = n, is trivially
verified. Suppose the claim holds for message set {k, . . . , n} and pk is the path
between nodes v and v̂. We partition pk into two sub-paths p and p̂ consisting
of 2k−1 nodes each, such that v ∈ p and v̂ ∈ p̂. We denote the last node of p
by u and the first node of p̂ by û. We distinguish two cases with respect to the
waiting times the algorithm has selected for message k in the nodes on pk.

Case a:
∑

u∈p |Wk(u)| ≥ (1/2)|Ik|. The adversary chooses vk−1 with total com-

munication time τvk−1
= δ − 2k−1 such that its path to s traverses p̂ but not

p. More precisely, we ensure that the first node message k − 1 has in common
with any other message is û. This is always possible, since the node degree is n.
This choice immediately makes that setting pk−1 = p̂ satisfies property (i). The
release time of k − 1 is chosen so that Ik−1(û) and Ik(û) start at the same time,
implying that Ik−1(u) and Ik(u) start at the same time for every u ∈ p̂. Since
|Ik−1(u)| = |Ik(u)|/2 we have Ik−1(u) ⊂ Ik(u) for all u ∈ p̂, whence property
(ii) follows by induction.

Note that, as we consider distributed algorithms, message k − 1 does not
influence the waiting time of j, j > k − 1, on p as û is the first node which both
j and k − 1 traverse. In particular, Wk(u) ∀u ∈ p is not influenced by k − 1.

Now, the equal starting times of Ik−1(û) and Ik(û) together with
∑

u∈p |Wk(u)| ≥
(1/2)|Ik| and |Ik−1(û)| = |Ik(û)|/2 imply that k will not reach û before interval
Ik−1(û) ends. This, together with the consideration above, implies property (iii).

To prove (iv), note that by induction it is sufficient to prove that Wk−1(u)∩
Wj(u) = ∅ ∀j > k− 1 ∀u ∈ p̂. Since, as just proved, Wk(u)∩ Ik−1(u) = ∅ ∀u ∈ p̂
we have Wk−1(u) ∩ Wk(u) = ∅ ∀u ∈ p̂. We have by induction that, for j > k,

13

Wj(u) ∩ Ij−1(u) = ∅ ∀u ∈ p̂ and we just proved that Ik−1(u) ⊂ Ij−1(u) ⊂
Ij(u) ∀u ∈ p̂, which together imply Wk−1(u) ∩ Wj(u) = ∅ ∀j > k ∀u ∈ p̂.

Case b:
∑

u∈p |Wk(u)| < (1/2)|Ik|. As in the previous case, the adversary

chooses vk−1 with total communication time τvk−1
= δ − 2k−1 such that its

path to s traverses p (therefore also p̂) but does not intersect any of the paths
used by messages {k, . . . , n} before it reaches p in v. Again, this is always pos-
sible since the indegree of each node is n. Hence, choosing pk−1 = p satisfies
property (i). The release time of k−1 is chosen so that Ik−1(v) and Ik(v) end at
the same time, implying that Ik−1(u) and Ik(u) end at the same time for every
u ∈ p. Since |Ik−1(u)| = |Ik(u)|/2 we have Ik−1(u) ⊂ Ik(u) for all u ∈ p, whence
property (ii) follows by induction.

The equal ending times of Ik−1(u) and Ik(u) together with
∑

u∈p |Wk(u)| <
1/2|Ik| and |Ik−1(u)| = |Ik(u)|/2 imply that k has left u before Ik−1(u) begins,
implying property (iii). Indeed, this gives Wk−1(u) ∩ Wk(u) = ∅ ∀u ∈ p. It also
implies that k − 1 could not influence the waiting time of k on p.

The proof of (iv) follows the very same lines as in Case a, with the difference
that we now refer to nodes in p instead of p̂. ⊓⊔

Since in the proof U = δ/4 we also have the following lower bound on the
competitive ratio of any deterministic synchronous algorithm.

Corollary 1. Any deterministic synchronous algorithm is Ω(log δ)-competitive.
⊓⊔

4.2 The asynchronous model

In this paragraph we consider deterministic algorithms for the asynchronous
model. We propose a deterministic algorithm and analyze its competitive ratio.
We also provide a lower bound on the competitive ratio for a broad class of
algorithms including this algorithm.

In the asynchronous model nodes are equipped with a clock and a distributed
algorithm. All clocks have the same time unit, but neither the time nor the start
of a new time unit on clocks is synchronized. We assume that τ(a) = 1 for all a,
such that τvj

is equal to the number of nodes on the path from vj to s.
We propose algorithm Spread Latency (SL) for this model, which divides the

latency minus communication time of each message j equally over the nodes on
the path from vj to s: at each node of this path the message is assigned a waiting
time of (Lj − τvj

)/τvj
time units. As soon as messages appear simultaneously

at the same node they get aggregated into a packet, which is sent over the
outgoing arc as soon as the waiting time of at least one of its messages at that
node has passed. In this way, no message is delayed due to aggregation and thus
the algorithm yields a feasible solution.

As in the previous subsection, let U :=
maxj |Ij |

max{1,minj |Ij |}
=

maxj(Lj−τvj
)

max{1,minj(Lj−τvj
)} .

Theorem 5. The algorithm SL is O(δ log U)-competitive.

14

Proof. We prove that for all a ∈ A the number of packets SL sends through a
is at most O(δ log U) times that number in an optimal solution. This proves the
theorem.

Let λ := max{1,minj(Lj − τvj
)}. Consider a packet P of messages sent

by an optimal solution through (u, v) at t. Without loss of generality we do
not consider messages for which minj(Lj − τvj

) = 0 as these messages have
to be sent upon release by both SL and the optimal algorithm. To bound the
number of packets sent by SL that contain at least one message from P , define
Pk := {j ∈ P | 2k−1λ ≤ Lj − τvj

< 2kλ}, for k = 1, . . . , ⌈log U⌉. We charge
any sent packet to the message that caused the packet to be sent due to its
waiting time being over. It suffices to prove that the number of packets charged
to messages in Pk is O(δ).

Since the waiting time of messages j ∈ Pk at node u is at least 2k−1λ/δ, the
delay between any two packets that are charged to messages in Pk is at least
2k−1λ/δ. Since the optimal solution sends packet P at time t through arc (u, v),
we get t ∈ Ij(u) ∀j ∈ P and thus Ij(u) ⊆ [t − 2kλ, t + 2kλ] ∀j ∈ Pk. Thus, the
number of packets charged to messages in Pk is at most 2 · 2kλ/(2k−1λ/δ) = 4δ.

⊓⊔

The competitive ratio of SL can be Ω(δ log δ)-competitive. Consider the chain
um, . . . , u1, s with unit transit times; i.e. m = δ. We assume δ > 4. An adversary
releases messages ji,k at node um for i = 1, . . . , δ/4 and k = 0, . . . , log2 δ − 1.

The release time of message ji,k is r(i, k) = δ + 2k+1

δ
i − 2k and the latency

is L(i, k) = 2k + δ. It follows from the observations r(i, k) < r(i + 1, k) and
r(δ/4, k) < r(1, k − 1) that messages are released ordered by decreasing values
of k and then by increasing values of i. This induces the total order ≺ on pairs
(i, k) and (i′, k′). Formally, (i, k) ≺ (i′, k′) if either k > k′ or k = k′ and i ≤ i′.

We have Iji,k
= [r(i, k) + δ, r(i, k) + L(i, k)]. As r(i, k) + δ ≤ 2δ and r(i, k) +

L(i, k) ≥ 2δ for each message ji,k, we have
⋂

j∈ji,k
Ij 6= ∅, hence the adversary

may aggregate all messages at their common release node um. Let Wj(u) be, as
defined before, the waiting time interval of message j on u determined by SL. We

have Wji,k
(um) = [r(i, k), r(i, k) + L(i,k)−δ

δ
]. It follows from simple arithmetics

that r(i, k)+L(i,k)−δ

δ
< r(i′, k′) for all pairs (i, k), (i′, k′) such that (i, k) ≺ (i′, k′).

Hence, Wj(um) ∩ Wj′(um) = ∅ for any two messages j and j′ and SL sends all
messages separately from um. This implies that SL is Ω(δ log δ)-competitive for
the sensor problem with unit costs.

SL determines the waiting time of each message at the nodes it traverses
independently of all other messages. We call such an algorithm a memoryless
algorithm. To be precise, in a memoryless algorithm node v determines the
waiting time of message j based only on the message characteristics (vj , rj , dj),
communication time to the sink τv and clock time. The following lower bound
shows that the competitive ratio of SL cannot be beaten by more than a factor
O(log U) by any other memoryless algorithm. In the derivation of the lower
bound we restrict to memoryless algorithms that employ the same algorithm in
all nodes with the same communication time to s. This is not a severe restriction,

15

given that communication time to s is the only information about the network
that a node has.

Theorem 6. Any deterministic asynchronous memoryless algorithm is Ω(δ)-
competitive.

Proof. Consider a binary intree with root s and all leaves at distance δ from s.
An adversary releases message 1 with latency L at time r1 in a leaf v1. There
must be a node v where message 1 waits at most (L − τv1

)/δ. The adversary
releases message j, j = 2, . . . , δ, at a leaf vj at time r1 + j(L − τv1

)/δ such that
all messages j are sent over node v, and no two messages can be aggregated
before reaching v. Because τvj

= τv1
∀j and we assumed that any memoryless

algorithm applies the same algorithm in nodes with the same communication
time to the sink, all messages are sent non-aggregated to and from v, whereas
they are aggregated as early as possible in an optimal solution, in particular at
v. ⊓⊔

The lower bound does not hold for arbitrary algorithms as a node may adjust
the waiting time of subsequent messages that traverse that node. However, we
notice that only if a node delays subsequent messages longer the competitive ratio
might be better. If the waiting time at a node does not increase for subsequent
messages, the competitive ratio remains Ω(δ1−ǫ). The following theorem shows
that the lower bound remains Ω(δ) if release nodes do not delay subsequent
messages longer than preceding messages.

Theorem 7. Any asynchronous memoryless algorithm for which the waiting

time of message j at its release node is at most
L−τvj

K
is Ω(K)-competitive.

Proof. Consider a chain which consists of two nodes v and s. We assume constant
latency L for each message. The adversary releases K − 1 messages with an
interval of (L− τvj

)/(K − 1) at v. Since the waiting time of message j at v is at
most (L− τvj

)/K, none of these messages are aggregated in the on-line solution,
whereas they are all aggregated in one packet in an optimal solution. ⊓⊔

The theorems prove that SL is Ω(δ)-competitive. For arbitrary asynchronous
algorithms we do not have any better lower bound than the one in Theorem 4.
Furthermore, notice that for any memoryless algorithm to have a competitive
ratio better than some constant times the number of messages, it should delay
messages at their release node.

Improved algorithm for the case of a chain. We describe an algorithm with
improved competitive ratio for the case that the network is a chain with s in one
of its ends, Line-SL. We first introduce a classification of the nodes on the chain.
Initially, all nodes are unclassified. Let 2p|n := max{p ∈ N,∃k ∈ N s.t. n = k2p}.
For p = ⌊log δ⌋, . . . , 0 we assign all unclassified nodes v with 2p|τv to class p.
Notice that the resulting classification of nodes has the property that between
any pair of nodes of the same class there is at least one node of higher class.

16

We describe the algorithm Line-SL. For a message j which is released at
node vj we set wj := (Lj − τvj

)/(⌊log τvj
⌋+ 1). The rough idea of the algorithm

is as follows: When message j reaches a node v of class p and j has not visited
a node of higher class yet, it waits at node v for wj time units. Otherwise, if j
has already visited a node of class larger than p, it does not wait at node v at
all. Since between any pair of nodes of the same class there is at least one node
of higher class, a message will wait at most once at a node of class p for each
p = 0, . . . , ⌊log δ⌋. Moreover, the highest class of a node message j will find on its
path from vj to the sink is ⌊log τvj

⌋. Thus, the overall waiting time of message
j accumulates to no more than

wj(⌊log τvj
⌋ + 1) = Lj − τvj

.

Therefore the message arrives at the sink at or before time rj+τvj
+Lj−τvj

= dj .
As in the SL algorithm, messages are aggregated into a packet if they appear

simultaneously at an intermediate node. This packet is sent over the outgoing arc
as soon as the waiting time of at least one of its messages at that node has passed
(in particular, if a packet contains a message that does not wait at a particular
node, then the packet does not wait at that node). Notice that no message is
delayed due to aggregation and therefore the algorithm yields a feasible solution.

Theorem 8. Line-SL is O(log3 δ)-competitive.

Proof. We prove that the number of packets sent through an arc by Line-SL

is at most O(log3 δ) times the number of packets sent by an optimal solution
through this arc.

Let λ := max{1,minj(Lj −τvj
)}. Consider a packet P of messages sent by an

optimal solution through arc a ∈ A at time t. We derive a bound on the number
of packets sent by Line-SL that contain at least one message from P .

As above, we define Pk := {j ∈ P | 2k−1λ ≤ Lj − τvj
< 2kλ} for k =

1, . . . , ⌈log U⌉. Moreover, for p = 0, . . . , ⌊log δ⌋, let Pk,p denote the subset of Pk

that consists of all messages j that have visited a node of class p but no node of
class p + 1 before being sent through arc a. Notice that the number of subsets
Pk,p is O(log δ log U) = O(log2 δ).

We charge any packet sent by Line-SL to one of its messages j ∈ Pk,p where
k and p are chosen maximally. The waiting time of a message j ∈ Pk,p at a
node of class p is at least 2k−1λ/(log δ +1). On the other hand, messages in Pk,p

can only pass this node of class p within a time interval of 2 · 2kλ (see proof of
Theorem 5). Thus, the number of packets charged to messages in Pk,p is at most
4(log δ + 1) ∈ O(log δ). Since the number of subsets Pk,p is O(log2 δ), the result
follows. ⊓⊔

5 Variations and generalizations

We consider some variations and generalizations to the sensor model studied
in the previous sections. A first variation is obtained by changing the objective

17

to minimizing the sum of energy consumption. This objective is common in
networks where nodes have access to a replenishable energy source. In a technical
report of this paper [2] we show that most of our positive results (upper bounds)
in this paper also hold under this min-sum objective. In particular the distributed
algorithms in Section 4 can be applied and their competitive ratios are equal to
those given in Theorems 3 and 5. The lower bounds do not hold. Hence, there
are bigger gaps between lower and upper bounds in the competitive analysis for
this objective.

For the off-line version of the problem, a minor adaption makes the NP-
hardness proof hold also for the min-sum objective. Also, in [2] we have devised a
dynamic programming algorithm that works in polynomial time for the problem
on a chain. In this case the problem is equivalent to a batch processing problem,
for which Finke et al. [9] developed the same dynamic programming algorithm
independently of us. It is an open question if a polynomial time algorithm exists
for the min-max objective on a chain.

As a second variation we consider generalizations of the assumption of total
aggregation. Under total aggregation any two messages can be aggregated into
a single packet regardless of their release times and release nodes. In practice
total aggregation is not always possible; whether messages can be aggregated
depends on the data. We consider two generalizations which model these limi-
tations: concave cost functions, and geographically bounded aggregation.

In the concave cost function model the communication cost of a packet is a
non-decreasing concave function in data size. The reason to choose a concave cost
function is that typically in short-range communication the costs are determined
by a (significant) start-up cost, and a communication cost which is linear in the
data size [12, 20]. Even in the case that aggregation is no more than appending
messages to a packet, a concave cost function is a very natural cost function.
In case aggregation results in a packet with data size less than the sum of the
original packets, an aggregation function models to what extend packets can be
aggregated; such a function is typically a concave non-decreasing function [11].
Thus a concave cost function reflects both the economies of scale of sending an
aggregate packet, and the gain obtained by data compression. Most results of
the previous sections generalize to concave non-decreasing cost functions. First,
since the constant cost function of the total aggregation model is both concave
and non-decreasing, all lower bounds derived in this paper hold for any such cost
function. Thus, we focus on the positive results. Consider the same algorithms,
CC for the synchronous model and SL for the asynchronous model. The proofs
of Theorem 3 and Theorem 5 are both based on bounding the number of packets
the algorithm sends for each packet that the optimal solution sends. It follows
from a straightforward analysis that these proofs generalize to cost functions
which are both concave and non-decreasing.

In practice, the aggregation of packets can be subject to geographical con-
straints. In particular, it may be unfeasible to aggregate two messages originating

18

from sensors that are too far apart. In order to model this kind of constraints we
introduce the geographically bounded total aggregation model, which is defined as
follows. Messages i and j can be aggregated into a single packet if both i and
j can reach a common ancestor node in time at most ρ; i.e., there is a node v
on the intersection of the path from vi to s and the path from vj to s, such
that τvi

− τv ≤ ρ and τvj
− τv ≤ ρ. Otherwise, the messages can not be aggre-

gated. If two messages can be aggregated they can be totally aggregated, i.e.,
the cost of a packet is independent of the number of messages it contains. The
total aggregation model studied before is a special case, with ρ = δ.

For the synchronous model we propose the CC algorithm again. We briefly
discuss the proof of the competitive ratio of CC and we discuss how the lower
bound proof can be adapted.

CC is O(log U)-competitive for any choice of ρ, because Lemma 4 remains
valid; we only have to adapt to the fact that multiple packets may arrive at the
sink, at a single time. Also, Theorem 4, which gives a lower bound of Ω(log U) on
any deterministic synchronous algorithm, remains valid. The class of instances
on which the lower bound is based becomes more restricted. In the proof of
Theorem 4 the instances had to satisfy U = O(δ), now they have to satisfy
U = O(ρ). As a result Corollary 1 becomes:

Corollary 2. Any deterministic synchronous algorithm is Ω(log ρ)-competitive
for the sensor problem. ⊓⊔

For the asynchronous model we present the Geographic Spread Latency
(GSL) algorithm: For each message j assign to this message a waiting time
of (Lj − τvj

)/ρ time units at the first ρ nodes it traverses. As soon as messages
appear simultaneously at the same node, and they can be aggregated, they get
aggregated into a packet, which is sent over the outgoing arc as soon as the wait-
ing time of at least one of its messages at that node has passed. The algorithm is
an adaptation of the SL-algorithm, and the algorithms are identical if ρ = δ. A
straightforward adaptation of the proofs of Theorems 5 and 6 gives the following
result:

Corollary 3. The algorithm GSL is O(ρ log U)-competitive, and any determin-
istic asynchronous memoryless algorithm is Ω(ρ)-competitive.

6 Conclusions

The results we presented in this paper are the first results on a rich class of
problems which are both theoretically and practically interesting. We described
the great variety of problems in this class in the introduction.

For the off-line problem we proved that the problem is NP-hard on a tree; we
presented a 2-approximation, but we have no lower bounds on the approxima-
bility. It would be interesting to see if there exists an approximation preserving
reduction from an APX-hard problem.

19

For the synchronous model we presented an O(log U)-competitive algorithm
and we showed that this algorithm is best possible up to a multiplicative con-
stant. For the asynchronous model we presented an O(δ log U) -competitive algo-
rithm. There remains a gap between this bound and the lower bound of Ω(log U)
from the synchronous model. Theorem 6 shows that improvements in the upper
bound should come from algorithms that are essentially different from the one
we presented here. We also demonstrated that most of our results can be gener-
alized to models with a concave cost function, or where aggregation is regionally
bounded.

ACKNOWLEDGMENTS. Supported by EU Integrated Project AEOLUS (FET-15964),

EU project ADONET (MRTN-CT-2003-504438), EU COST-action 293, Dutch project

BRICKS, DFG Focus Program 1126, “Algorithmic Aspects of Large and Complex

Networks”, grant SK 58/5-3, MIUR-FIRB Israel-Italy project RBIN047MH9.

References

1. I. Akyildiz, W. Su, Y. Sanakarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks Journal, 38(4):393–422, 2002.

2. L. Becchetti, P. Korteweg, A. Marchetti-Spaccamela, M. Skutella, L. Stougie, and
A. Vitaletti. Latency Constrained Aggregation in Sensor Networks. SPOR-report
2006-08, TU Eindhoven, www.win.tue.nl/bs/spor, 2006.

3. A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in sensor networks: an
energy - accuracy tradeoff. Ad-hoc Networks Journal, 1(2-3):317–331, 2003.

4. C. Brito, E. Koutsoupias, and S. Vaya. Competitive analysis of organization net-
works or multicast acknowledgement: how much to wait? In ”Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 627–
635, 2004.

5. A. Broder and M. Mitzenmacher. Optimal plans for aggregation. In Proceedings
of the 21st Annual Symposium on Principles of Distributed Computing (PODC),
pages 144–152, 2002.

6. J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In Pro-
ceedings of the 2001 International Parallel and Distributed Processing Symposium
(IPDPS), Workshop on Parallel and Distributed Computing Issues in Wireless and
Mobile Computing, pages 1965–1970, 2001.

7. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using
reference broadcasts. In Proceedings of the 5th ACM Symposium on Operating
System Design and Implementation (OSDI), pages 147–164, 2002.

8. J. Elson and K. Römer. Wireless sensor networks: a new regime for time synchro-
nization. Computer Communication Review, 33(1):149–154, 2003.

9. G. Finke, V. Jost, M. Queyranne, and A. Sebö. Batch processing with interval
graph compatibilities between tasks. In Les Cahiers du Laboratoire, 118, Leibniz-
IMAG, 2004.

10. S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-sync protocol for sensor net-
works. In Proceedings of the 1st international conference on Embedded networked
sensor systems (SenSys), pages 138–149, 2003.

11. A. Goel and D. Estrin. Simultaneous optimization for concave costs: single sink
aggregation or single source buy-at-bulk. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms (SODA), pages 499–505, 2003.

20

12. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy efficient commu-
nication protocols for wireless microsensor networks. In Proceedings of Hawaiian
International Conference on Systems Science, pages 3005–3014, 2000.

13. F. Hu, X. Cao, and C. May. Optimized scheduling for data aggregation in wireless
sensor networks. In International Conference on Information Technology Coding
and Computing (ITCC), pages 557–561, 2005.

14. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network
density on data aggregation in wireless sensor networks. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS), pages 414–
458, 2002.

15. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In Mobile Computing and
Networking, pages 56–67, 2000.

16. K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks. Computer
Networks, 42(6):697–716, 2003.

17. S. Lindsey and C. S. Raghavendra. Pegasis: Power-efficient gathering in sensor
information systems. In Proceedings of IEEE Aerospace Conference, pages 1125–
1130, 2000.

18. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation
service for ad-hoc sensor networks. In Proceedings of the 5th ACM Symposium on
Operating System Design and Implementation (OSDI), pages 131–146, 2002.

19. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acquisi-
tional query processing system for sensor networks. ACM Transactions on Database
Systems (TODS), 30(1):122–173, 2005.

20. G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communica-
tions of the ACM, 43(5):51–58, 2000.

21. W. Yuan, V. S. Krishnamurthy, and S. K. Tripathi. Synchronization of multiple
levels of data fusion in wireless sensor networks. In Proceedings of IEEE Globecom,
pages 221–225, 2003.

21

