
Fully Decentralized Computation of Aggregates
over Data Streams

Luca Becchetti1 Ilaria Bordino 1 Stefano Leonardi 1 Adi Rosen 2

becchett@dis.uniroma.it bordino@dis.uniroma.it leon@dis.uniroma.it Adi.Rosen@lri.fr
1DIS, Sapienza Università di Roma 2LRI, Université Paris-Sud & CNRS

Roma, Italy Paris, France

ABSTRACT
In several emerging applications, data is collected in massive
streams at several distributed points of observation. A basic
and challenging task is to allow every node to monitor a
neighbourhood of interest by issuing continuous aggregate
queries on the streams observed in its vicinity. This class
of algorithms is fully decentralized and diffusive in nature:
collecting all data at few central nodes of the network is
unfeasible in networks of low capability devices or in the
presence of massive data sets.

The main difficulty in designing diffusive algorithms is
to cope with duplicate detections. These arise both from
the observation of the same event at several nodes of the
network and/or receipt of the same aggregated information
along multiple paths of diffusion.

In this paper, we consider fully decentralized algorithms
that answer locally continuous aggregate queries on the num-
ber of distinct events, total number of events and the sec-
ond frequency moment in the scenario outlined above. The
proposed algorithms use in the worst case or on realistic
distributions sublinear space at every node.

We also propose strategies that minimize the communica-
tion needed to update the aggregates when new events are
observed. We finally present experimental analysis provid-
ing evidence for the efficiency and accuracy of our algorithms
on realistic simulated scenarios.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

1. INTRODUCTION
A variety of emerging network applications are based on

spreading a large number of network devices over a broad
area. Examples are the continuous and distributed monitor-
ing of IP traffic flows, in which data is collected at multiple
points of observation and real-time analysis is performed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StreamKDD’10, July 25, 2010, Washington, DC, USA
Copyright 2010 ACM 978-1-4503-0226-5/10/06 ...$10.00.

on aggregated streams, or the use of sensing devices, con-
nected in a wireless sensor network, for environmental mon-
itoring. Sensing devices observe large amounts of events in
their surroundings. These events are recorded and processed
by nodes in the form of data streams. In sensor databases
we are required to answer aggregate queries over the streams
of data, while in distributed monitoring applications we are
interested in monitoring the events observed by the sensing
devices, for instance the movement of objects or measure-
ments of environment parameters.

A number of constraints is imposed in these applications
by the limited resources available at the sensing devices:

1. Communication is the most power-consuming operation.
Transmission of data to neighbor nodes must be carefully
optimized in order to ensure a longer life to battery-operated
devices. A direct consequence is that large streams of raw
data cannot be transmitted between nodes.

2. Sensing devices are limited in computational power. The
data received from the nodes can often only be processed on
the fly in a streaming fashion.

3. Sensing devices have limited storage capacity. Data can
be stored, even locally, only in aggregate form.

It is a basic and challenging task to provision the network
with primitives that allow every node to monitor its sur-
rounding by issuing continuous aggregate queries on the
streams of events observed by all nodes reachable within
a few hops.

A number of specific issues need to be addressed when
querying and monitoring distributed streams of data:

Continuous queries. Differently from traditional databases,
these applications must answer long-running queries, noti-
fying the application whenever a new answer is found. This
occurs for instance in applications that raise an alert when-
ever a specific event happens, or some measurement of in-
terest exceeds a given threshold.

Distributed streams. One first difficulty to handle when pro-
cessing aggregate queries on distributed streams is to dis-
criminate events that have been observed at multiple nodes
of the network. For instance, this problem arises naturally
for terrain-monitoring applications, where sensing devices
need to monitor objects that move across an area, or in
point-to-point communication when packets are observed
along all the nodes of a path.

One second difficulty to handle is that nodes are inher-
ently unreliable: they switch on and off in order to optimize
power consumption, they are prone to communication faults
and to power outage. In several important cases it is there-

1

fore impossible to aggregate information using hierarchical
structures, e.g. trees, where faults at single nodes of the net-
work may disrupt the whole structure. It is also impossible
to rely on very few nodes for collecting the aggregates on
raw data produced in the network.

Local queries. In sensor databases applications, aggregate
queries may be issued by any node of the network and the
answer restricted to the observations made in a neighbor-
hood of interest. Power consumption is optimized if the
nodes can decide to operate only when their observations
differ substantially from other nodes in their vicinity.

Decentralized algorithms addressing the issues above are
inherently diffusive in nature. The problem of detecting du-
plicates in aggregate information is now magnified, since a
node may receive the same data as part of aggregates re-
ceived through multiple paths of propagation. In this paper
we show how a set of continuous aggregate queries can be
processed from fully decentralized algorithms on distributed
streams of data.

1.1 Our Contribution
The design of algorithms for the computation of aggre-

gates within suitable neighbourhoods of all nodes of a net-
work entails two fundamental aspects:

1. The algorithm used to summarize the scenario of interest.
For any node u it requires a compact summary, or sketch in
the sequel, of the stream of events observed from u that is
composable and duplicate insensitive [8, 10]: it is possible to
merge the sketches of a set of nodes U to form a sketch of
the union of the streams of events observed by all nodes of
U . In the sequel, we consider the natural case in which U is
the set of neighbors within l hops from a node u, for some
l ≥ 0.

2. How and when information is propagated. This in turn re-
quires i) addressing communication costs and ii) estimating
the (further) error introduced by delay in communication.

Given the massive data sets we are interested in, we im-
pose constraints on the memory requirements for the compu-
tation and the overall amount of data exchanged to perform
the task. Namely, i) the amount of memory used at every
node of the network should be polylogarithmic in the num-
ber of nodes of the network and in the size of the streams.
ii) The communication complexity measured in terms of the
overall number of messages exchanged among nodes to per-
form the task. Below is a list of the main contributions of
our work:

1. We consider a very general distributed streaming sce-
nario and we describe compact distributed data structures
and a communication scheme to keep track of statistic aggre-
gates over distributed data streams. We are able to answer
at any node of the network continuous queries on the num-
ber of distinct events, total number of events and the second
frequency moment (size of Self-join) over the streams ob-
served within a suitably defined neighborhood of each node.
These algorithms require only polylogarithmic storage space
at each node of the network for number of distinct events,
and the total number of events. Observe that our methods
apply to a very general, fully-decentralized setting, whereas
existing works consider either a centralized scenario with a
single aggregating point or simple models for decentralized
computation where a direct communication is assumed to
be available between any pair of nodes in the network.

2. For the second frequency moment, we provide an im-
portant contribution by showing a polylogarithmic bound
on the storage size at each node when the distribution of
events follows a Zipf’s law. Observe that in [11] no poly-
logarithmic upper bound is given on the amount of space
needed to estimate the second frequency moment on data
streams with duplicates, whereas a Ω(

√
n) lower bound is

provided in the worst case for algorithms based on uniform
sampling.

3. We show optimized implementations and tests on large
scale real and synthetic datasets and realistic network topolo-
gies. Experimental results show that the fully decentralized
strategies we consider achieve in practice very good bounds
on storage, computation and communication costs while pro-
viding a good approximation of the statistics of interest.

4. We characterize the trade-off between the worst case
communication cost and accuracy for the sketch schemes we
consider. Moreover, we experimentally evaluate the perfor-
mance of a conservative strategy to trade off communication
costs and accuracy, proposed in [12] for a special case of the
scenario considered in this paper.

Organization of the paper. In Section 2 we introduce
the model and notation we use in the rest of the paper. In
Sections 3 and 4 we outline our overall approach and dis-
cuss sketch schemes for fully decentralized estimation of F0,
F1 and F2 in the presence of duplicates. For F2, we also
present the analysis for the important case of skewed data.
In Section 5 we address the fully decentralized implementa-
tion of the sketches we consider and show how to optimize
the amount of communication exchanged among nodes of the
network. In Section 6 we show the experimental evaluation
of the algorithms. Finally, Section 7 offers our concluding
remarks.

1.2 Related work
An excellent survey of distributed streaming techniques

has recently been provided in [9]. They distinguish be-
tween one-shot queries and continuous queries. Tree-based
aggregation for approximately answering of one shot holis-
tic queries use composable data synopses, as for instance
CM sketches [10] for point query, range queries, quantiles,
AMS sketches [2, 3] for frequency moments, FM [16] sketches
for counting distinct items. Greenwald and Khanna [18]
also propose decomposable synopses for computing quan-
tiles that can be adapted to tree-based aggregation.

Alternative to tree-based aggregation is broadcasting to
all neighbor vertices till the summaries reach the aggrega-
tion node of the network. These proposals need to exploit
synopses that are order and duplicate insensitive as those
proposed from Considine et al. [8], FM sketches [16], CM
sketches [10], and duplicate-insensitive aggregation schemes
[11] that propose duplicate insensitive estimation of the sec-
ond frequency moment for a single aggregating point. How-
ever, even in the restricted case addressed in [11], no poly-
logarithmic upper bound on the needed space is given.

Decentralized computation with every node in the graph
taking part in the computation and receiving the computed
value has been proposed in [21, 22] for computing max, sum,
avg and distinct items. This model is similar in spirit to
our proposal with two main differences: a. in our setting
we cannot assume direct communication between any pair
of nodes in the network; b. we are interested in holistic

2

aggregates at the local neighbor of any node of the network.
Main issue addressed so far in processing continuous queries

on distributed data streams is to reduce the communication
overhead between remote nodes and the aggregating point
by allowing some slack in the estimation. In [5] the problem
of distributing the slack between the participating sites is
addressed for Top-k computation on distributed streams. In
[12] several strategies of communication between the coordi-
nating site and the distributed participants are studied for
duplicate-insensitive aggregates as FM sketches and distinct
sampling [17].

2. MODEL AND PRELIMINARIES
Model. We assume an undirected graph G = (V,A), repre-
senting entities connected over a communication network.
Without loss of generality we assume all communication
edges bidirectional. Every node in the network observes a
stream of data over time. We denote by S(u) the stream
at node u. Each element of S(u) is an (item, attribute) pair
(i, a), where i is a value that we assume to be in [n] =
{0, 1, . . . , n − 1}, and a is an attribute from a discrete do-
main A. Since all statistics we consider are order insensitive,
S(u) may be regarded as a multiset of pairs, each pair with
a multiplicity equal to the number of times it appears in
the stream. Considered any stream S, we also define the
base set B(S), i.e., the set of distinct pairs appearing in S.
In the sequel, loosely speaking, we often use the expression
event to mean the observation of an (item, attribute) pair at
some node of the network. Given a subset U ⊂ V , we define
S(U) in the natural way as ∪u∈US(u), where the multiplic-
ity of a pair (i, a) in S(U) is the sum of its multiplicities in
S(u),∀u ∈ U . For l ≥ 0, Nl(u) denotes the subset of G’s
vertices within distance l from u. In the sequel, we write
B(U) instead of B(S(U)) for the sake of coinciseness.

Statistics. The general problem we are interested in is the
following: Given l ≥ 0, for every u ∈ V , compute some
statistics over B(Nl(u)). Depending on the choice of the
attribute, we’ll be able to estimate different aggregates of
interest. Considered a stream S, we denote by mi(S) (or
simply mi when no confusion arises) the number of distinct
pairs (i, a) in S: mi = |B(S)|, for every i ∈ [n]. The p-th
frequency moment of S is Fp =

∑
i∈Sm

p
i . When consid-

ering S(u) for some vertex u or S(U) for some subset U
of vertices, abusing notation we write mi(u), Fp(u), mi(U)
and Fp(U) for mi(S(u)), Fp(S(u)), mi(S(U)) and Fp(S(U))
respectively. In the sequel, we consider F0, the number of
distinct items, F1, the total number of distinct pairs in the
stream, and F2, the second frequency moment over the set
of distinct pairs.

Communication. We make the minimal assumption that
in a round of communication a node can only broadcast a
message to the set of its immediate neighbours. We make
no assumptions as to the topological structure of the neigh-
bourhood of a node or the way in which communication is
performed. Our model has an immediate practical coun-
terpart in wireless networks in which communication occurs
over a broadcast channel, while in other cases a round of
communication may actually involve multiple transmissions
along point-to-point connections.

3. OVERVIEW OF THE APPROACH
Each node in the network observes a local stream over

time and keeps a compact summary or sketch thereof, which

depends on the application of interest. Consider a streaming
algorithm A. We denote by SkA the function used by A to
compute sketches and by SkA(S) the sketch computed by A
at the end of the observation of a stream S. In the setting
we consider, every node u locally maintains two sketches
Sk(S(u)) and Sk(S(Nl(u))) and performs the following ac-
tions:

i. when a pair (i, a) is observed at u, the node updates
Sk(S(u)) and Sk(S(Nl(u))) in a way that depends on
the statistics of interest and the algorithm used;

ii. if u receives a sketch Sk(S(v)) originating from a node
v (i.e., an update of Sk(S(v))), u updates Sk(S(Nl(u)))
and forwards the update to its neighbours, as long as
its distance from v is less than l;

iii. u continuously monitors the current estimate of the
statistics of interest over S(u). If this value differs
from the most recently propagated value significantly,
the current value of Sk(S(u)) is propagated to u’s im-
mediate neighbours.

Step ii. is achieved using messages that contain a TTL
(Time To Live) field, which is decremented at each node
reached by the message, as is customary in gossip-based net-
work protocols.

Clearly, not all sketches are suitable for our setting. Fol-
lowing previous work, we consider sketches that are com-
posable and duplicate insensitive [23, 8, 19]. Considered an
order insensitive statistics of interest, a sketching algorithm
A for its estimation is composable if, given two streams
S1 and S2, SkA(S1 ∪ S2) = merge(Sk(S1), Sk(S2)), where
merge(·) is a suitable sketch aggregation function that de-
pends on A and the statistics of interest [8]. A sketching
algorithm is duplicate insensitive if, considered any stream
S, Sk(S) = Sk(B(S)) (where B(S) is regarded as a multi-
set). In next Section, we address the problem of designing
accurate, composable and duplicate insensitive sketches for
the primitives of interest in this paper.

4. DECENTRALIZED COMPUTATION OF
F0, F1, AND F2

4.1 Composable, duplicate-insensitive sketches
We start the presentation of our algorithms with a brief

overview of the most important characteristics of counting
sketches, which we use as building blocks of our methods
for computing aggregate statistics in a fully-decentralized
setting. A counting sketch is a composable and duplicate
insensitive counter of the number of distinct (i, a) pairs ap-
pearing in a stream S. In the sequel, we consider two ap-
proaches: the first is the original approach of Flajolet and
Martin, considered in [12] and modified in [3]. The second
is a slightly different technique proposed in [6]. Since these
are well established techniques, we only give an overview to
make the paper self-contained, referring the reader to [16,
3, 12, 6] for details. The use of composable and duplicate
insensitive sketches has been considered previously for re-
stricted distributed settings, especially for data aggregation
at the sink of a sensor network [23, 8, 19].

FM sketches. In the sequel, we use the phrase“FM sketch”
to refer to any implementation of the original counting sketch
of [16]. FM sketches [16] use a simple approach in which
each sketch is a vector of m entries, each entry being a

3

bitmap of length k = O(logM), with M an upper bound
on the size of the universe. In our setting, the universe is
the set of possible (i, a) pairs, so that M ≤ n|A| (in prac-
tice, M = 2k, e.g., k = 64). Considered the s-th bitmap of
the sketch. Every pair (item, attribute) (i, a) is hashed
onto the bitmap bits using a (independently chosen) hash
function Hs(·) : [n] × A → {0, . . . , log2M − 1}, such that
the probability of hashing onto the h-th bit is 2−h. The bit
under consideration is set to 1 if it was 0. After processing
the stream, let rs denote the position of the least significant
bit that is still 0 in the s-th bitmap: rs is a good estimator
for log2 F0, the logarithm of the number of distinct pairs ob-
served. To improve accuracy, we consider 1

m

∑m
s=1 rs as an

estimator of log2 F0, where m = O
(

1
ε2

log 1
δ

)
.

Bar-Yossef et al. [6]. In this approach, the sketching al-
gorithm maps every pair (i, a) to an integer using a pairwise
independent hash function h(·) and at any point in time it
maintains the list of the L smallest distinct values observed
so far, where L = d96/ε2e, ε being the required precision.
If v is the L-th smallest distinct value maintained by the
algorithm, LM/v is an estimator of F0, where M = n3 (see
[6] for details). Precision can be increased by the standard
trick of considering m independent and parallel copies of the
algorithm and taking the median of the corresponding esti-
mations, where again m = O

(
1
ε2

log 1
δ

)
. In the rest of the

paper, we will use the phrase “BY sketch” to refer to any
implementation of this counting sketch.

Composability. Clearly, both sketches are composable and
duplicate insensitive: Considered two streams S1 and S2

over the same universe and their FM sketches SkFM (S1)
and SkFM (S2), Sk(S1)ORSk(S2) is the sketch corresponding
to S1 ∪ S2. As for the BY sketches, every such sketch is an
array of m lists, each maintained according to the algorithm
described above. Merging of two such sketches is simply
achieved as follows: for every s = 1, . . . ,m, merge the s-th
lists of the two sketches and keep the L smallest values of
the merged list. Both approaches achieve similar bounds in
terms of efficiency and precision, as stated by the following

Theorem 1 ([12, 16, 6]). Given a stream S of (item,

attribute) pairs, it is possible to maintain an estimate Ĉ
of the number C of distinct pairs in S using O

(
1
ε2

log 1
δ

)
memory words, such that:

P
[
|Ĉ − C| > εC

]
≤ δ.

4.2 Maintaining F0 and F1

Any of the schemes outlined above can be used to main-
tain, for a stream S, an accurate and duplicate insensitive
sketch for F0(S) or F1(S). For F0, we want to count the
number of distinct items observed in S, so we set a = null.
As to F1, this is the basic problem of counting the number
of distinct pairs, therefore it can be maintained with the
guarantees mentioned above.

4.3 Maintaining F2 with duplicates
We now present our algorithm for computing F2 in a fully-

decentralized setting. We adapt the method proposed by
Achlioptas [1] to maintaining F2 with duplicates in a de-
centralized scenario. We show that the method achieves
polylogarithmic space on skewed data.

4.3.1 Maintaining F2 using random projections
The most effective approaches to efficiently maintain F2

in a centralized setting are based on random projections of
the frequency vectors over a space of smaller dimension. A
similar approach, explicitely designed to maintain F2 over a
data stream, was proposed in [3] and extended in [15, 20].
Independently, a number of techniques have been proposed
to achieve the more general goal of maintaining pairwise eu-
clidean distances of a set of vectors in lower dimensional
space, mostly extending or modifying a key result by John-
son and Lindenstrauss (see [13] for a relatively simple proof).
A substantial simplification of the original scheme that we
adopt in this work was proposed by Achlioptas [1].
Maintaining F2(S) in the absence of duplicates. In
this case, (i, a), (i, b) ∈ S implies a 6= b. Then, the approach
described in the above paragraphs immediately applies to
m(S) as done in [3]: assume m is the state of the frequency
vector after the first t elements in S have been observed.
At any time t, we maintain m̂ = mR as follows: If the
value of the t + 1-th item observed is i, m̂j = m̂j + ei ·R
for j = 1, . . . , d, where ei is the n-dimensional row vector
whose i-th component is 1, all other components being 0.
So, observation of i determines the addition or subtraction
of 1 in every component of m̂.
Maintaining F2(S) in the presence of duplicates. When
duplicates are present in S, we use the “tug-of-war” sketch
considered in [2, 11]. In particular, we notice that m̂j(S) =
Ij(S)−Dj(S), where Ij(S) (respectively, Dj(S)) counts the
number of distinct (i, a) pairs observed in S that deter-
mine the addition of +1 (addition of −1) to m̂j(S). Hence,
for every j = 1, . . . , d, we can estimate Ij(S) and Dj(S)
using the techniques described in Section 3. More in de-
tail, for every j, we maintain a counting sketch to esti-
mate Ij(S) (respectively Dj(S)). The overall tug-of-war
sketch obtained this way consists of 2d counting sketches
and it is clearly duplicate insensitive and composable. In
particular, to compose two tug-of-war sketches, the compo-
nent counting sketches are pairwise composed in the obvi-
ous way. Following the above paragraph on maintaining the
2-norm, if Ĩj(S) (respectively, D̃j(S)) denotes the estima-
tion of Ij(S) (respectively, Dj(S)), our estimator of F2(S)

is 1
d

∑d
j=1(Ij(S)−Dj(S))2.

Maintaining R. Maintaining R explicitely requires O(nd)
space at every node, which is unfeasible. Furthermore, if we
want to compute F2 over the union stream of a subset of the
vertices, it is necessary that all nodes use the same random
projection. In practice, all nodes generate the entries of R
whenever needed using the same pseudorandom generator
(and thus polylogarithmic space). To generate Rij , u com-
putes the j-th value of the random generator with initial
seed i. This way, all vertices generate the same value for
Rij .

1

4.3.2 Analysis for skewed data
The best algorithm to maintain F2 with duplicates under

general distributions requires space O
(

1
ε4

√
n logn

)
[11]. In

the same paper, the authors prove an Ω(
√
n) lower bound

for algorithms based on uniform sampling and it is an open

1It is clear that the matrix generated this way no longer sat-
isfies the independence assumptions of [1], but choosing the
pseudorandom generators independently for every column is
in practice enough and is close to the requirements of [3].

4

question whether this bound indeed holds in general.
In the present paper, we show that the algorithm de-

scribed above provides an accurate estimation of F2 using
polylogarithmic space for skewed data, which is the case in
most applications of interest. We assume that m(S) is dis-
tributed according to a Zipf law with parameter α > 1, i.e.:
mi = M/iα. The analysis for α ≤ 1 (showing decreasing
accuracy as α decreases) proceeds along similar lines and
will be given in the full version of the paper. Under these
assumptions we are able to state the following theorem:

Theorem 2. If m(S) is distributed according to Zipf law
with parameter α > 1, it is possible to compute an estimation
F̃2(S) such that:

P
[
|F̃2(S)− F2(S)| > 2εF2(S)

]
≤ δ,

by using an amount of O((1
ε4(α−1)4

log 1
δ
)(log 1

ε
+ log 1

δ
))

memory words per node.

Proof. We consider F2(S) under the assumption that
m(S) is distributed according to a Zipf law with parameter
α. We consider the case α > 1 in the sequel. We drop S in
the rest of this subsection, and we assume without loss of
generality that m1 ≥ · · · ≥mn:

mi =
M

iα
,

where M is a positive, integer constant. It is clear that
by this definition the components of m will be fractional.
Assuming integer components does not affect the result, but
it makes proofs much more involved, so we do not consider
this issue here. The proof of the following simple lemma is
deferred to the full paper.

Lemma 1. If m follows a Zipf law with parameter α > 1,
for every n ≥ 2:

F2 ≥
M2

4α− 2
.

We next characterize the error achieved by the overall al-
gorithm. Note that this error has two sources: i) the random
projection; ii) the propagation algorithm.

In particular, recall that m̂ = mR and m̂j = Ij −Dj . In
fact, Ij and Dj are estimated at u from the corresponding
FM sketches, so that u actually only computes two estimates
Ĩj and D̃j of Ij and Dj . In particular, consider realizations
of Ij , Dj , Ĩj and D̃j and assume that Ĩj = (1 + ε1(j))Ij and

D̃j = (1 + ε2(j))Dj . The estimation of F2 using the pro-

jected vector would be 1
d

∑d
j=1 m̂2

j . In practice, u computes
a vector m̃ that is itself an estimation of m̂. In particular,
m̃j = Ĩj − D̃j . This implies that our actual estimation of

F2 is F̃2 = 1
d

∑d
j=1 m̃2

j . The simple proof of the following
lemma is given in the full paper for the sake of space.

Lemma 2.

F̃2 =
1

d

d∑
j=1

(Ij −Dj)2 + E,

where |E| ≤ 3
d

∑d
j=1 max{|ε1(j)|, |ε2(j)|}(Ij +Dj)

2.

In the sequel, we show that i) 1
d

∑d
j=1(Ij −Dj)2 (i.e., the

squared 2-norm of the projected vector) is a close approxi-
mation of F2 with high probability; ii) |E| can be compen-
sated by forcing the ε1(j)’s and ε2(j)’s to be small enough.
The first claim is just a restatement of Lemma 5.1 in [1].

Lemma 3 ([1]). Let S = 1
||m||22

∑d
j=1(Ij − Dj)2. With

probability at least 1− δ
2
the following holds:

|S − d| ≤ εd,

whenever d ≥ 24
3ε2−2ε3

ln 4
δ
.

Lemma 4. If d dimensions are used for the random pro-
jection, using memory O(d

ε2(α−1)4
log d

δ
) it is possible to en-

sure that with probability at least 1− δ
2
the following holds:

|E| ≤ εF2.

Proof. First note that, for every j = 1, . . . , d:

Ij +Dj =
n∑
i=1

M

iα
< M +M

∫ n−1

2

1

iα
di <

α+ 1

α− 1
M,

which implies (Ij +Dj)
2 <

(
α+1
α−1

)2
M2 for every j.

Now, we represent every counter (2d counters) using count-

ing sketch (see Theorem 1) consisting ofO

((
1
ε

)2 (1
α−1

)4
ln d

δ

)
bitmaps. Choosing constants suitably, Theorem 1 allows to
prove that:

P

[
|Ĩj − Ij | >

ε

12α− 6

(
α− 1

α+ 1

)2

Ij

]
<

δ

4d
.

The same holds for D̃j and Dj . This implies:

P

[
∃j : max{|ε1(j)|, |ε2(j)|} >

ε

12α− 6

(
α− 1

α+ 1

)2
]
<
δ

2
.

As a result, with probability at least 1− δ
2
:

|E| ≤
3

d

d∑
j=1

max{|ε1(j)|, |ε2(j)|}(Ij +Dj)
2

<
3

d

d∑
j=1

ε

12α− 6

(
α− 1

α+ 1

)2

(Ij +Dj)
2 < εF2,

where the third inequality follows from (Ij+Dj)
2 <

(
α+1
α−1

)2
M2

and from Lemma 1.

We can now prove the theorem.
Again, we drop S since clear from context. We apply

Lemmas 3 and 4 with d = 24
3ε2−2ε3

ln 4
δ
. Setting

Ŝ =
1

d

d∑
j=1

(Ij −Dj)2,

Lemmas 3 and 4 imply that (|Ŝ−F2| ≤ εF2) ∧ (|E| < εF2)
with probability at least 1− δ, so that we have:

P
[
|F̃2 − F2| > 2εF2

]
= P

[
|Ŝ + E − F2| > 2εF2

]
≤ P

[
|Ŝ − F2|+ |E| > 2εF2

]
≤ P

[
|Ŝ − F2| > εF2

]
+P[|E| > εF2] ≤ δ.

The bound of Theorem 2 depends on the value of α and
it becomes unbounded as α → 1. In fact, for α = 1 we
obtain a polylogarithmic bound independent of α and which
is stronger than the one of Theorem 2 for values of α close
to 1.

5

5. DISTRIBUTED IMPLEMENTATION AND
COMMUNICATION TRADEOFFS

In this section, we describe a distributed implementation
of the primitives described in Section 4. Given the compos-
ability and duplicate insensitivity of the sketches we con-
sider, the results on the accuracy immediately carry over, so
we do not discuss this issue again.

5.1 Distributed implementation
Generic node behaviour (Figure 1). Upon observing
a pair (i, a), node u invokes PROCESSITEM(S, i, a, l) to
update its local and global sketches LS and GS (lines 1 and
2) and the estimate of the statistics of interest over S(u)
(line 3). If this exceeds the last value sent2 by more than
a given threshold (line 4), a message MS containing LS’s up-
date is built and sent, with initial TTL = l. Whenever u
receives a message from some neighbour v, containing v’s
update of Sk(S(v)), PROCESSMESSAGE(S, MS) extracts the
sketch and updates u’s global sketch (lines 1 and 2). The
TTL is decremented and, if larger than 0, the message is for-
warded to u’s neighbours. Note that this generalizes the “no
sharing” update scheme of [12], where they consider a star
network topology with a single, central coordinator main-
taining a global sketch (See Subsection 5.2). It remains to
show i) how sketches are updated and merged and ii) how
the threshold is defined. The former issue is briefly discussed
in the next paragraphs for F0 (and F1) and for F2, while the
latter is addressed in Subsection 5.2.

Fully decentralized distinct counting. In this case, LS
and GS in Figure 1 are counting sketches for the estimation
of F0(u) and F0(Nl(u)) respectively. Counting sketch up-
date and merge operations and count estimation have been
succintly described in Subsection 4.1. The pseudo-code of
the main routines will be described in the extended version
of the paper for the sake of space.

Fully decentralized estimation of F2. In this case, LS
and GS in Figure 1 are composite sketches for the estimation
of F2(u) and F2(Nl(u)) respectively. Following Subsection
4.3.1, LS and GS each consist of 2d counting sketches, where
d is chosen according to Lemma 3. Considering LS (GS has
exactly the same structure), for every j = 1, . . . , d, the j-th
sketch LS[j] consists of two counting sketches ILS[j] and
DLS[j], to keep track of counters Ij(S(u)) and Dj(S(u)),
as described in Subsection 4.3.1. Update, merge and F2

estimation routines occur as described in Subsection 4.3.1.
The pseudo-code will be given in the extended version of the
paper for the sake of space.

5.2 Communication and Tradeoffs
In this section, we describe in more detail how contin-

uous monitoring of statistics is performed; in particular,
when and how information is propagated within the net-
work. The general approach has been described in Section
3. In the experiments we considered the Threshold triggered
updates approach investigated of [12] (“No sharing” policy).
Carrying this policy over to our scenario, node u sends an
update, i.e., its local sketch LS, whenever the estimate C
of the statistics of interest over the local stream changes,
with respect to the last propagated value C0, i.e., whenever
C > (1 + θ/|Nl(u)|)C0, for some θ > 0.

2More precisely, whose corresponding sketch was sent.

We also considered an orthogonal approach in which, when
a new observation occurs, only the portion of the sketch
that eventually changes is propagated. This approach al-
lows a slight improvement in the overall (worst case) number
of bits transmitted and brings to messages of smaller size,
which can be important in some applications, e.g., sensor
networks. For the sake of space and since we used the ap-
proach of [12] in the experiments, this part will be presented
in the extended version of the paper.

6. EXPERIMENTAL ANALYSIS
The graph used in the experiments is a real topology of

(part of) the Internet at the level of the Autonomous Sys-
tems collected by DIMES [24] in December 2008. The sym-
metrized version of this graph consists of 65 512 nodes and
148 364 edges, and its diameter is equal to 8.

Nodes were assigned real and synthetic traffic data. Real
data consist of HTTP requests sent to the 1998 World Cup
Web site, made available3 by the Internet Traffic Archive [4]
and spanning three months (May-July 1998). These data
were also used in [12]. We considered a week of data, con-
sisting of 10 million tuples. Each HTTP request record con-
tains clientID, objectID, serverID and a timestamp. In our
experiments, we did not consider serverID and we chose to
focus on the triples (clientID, objectID, timestamp). The
data tuples were assigned to nodes of the graph using a
hash function to map clientIDs onto graph vertices. Stream
tuples then consisted of (objectID, timestamp) pairs.

We generated synthetic data considering a universe of
items of size 1, 000, 000. We imposed mi (number of distinct
pairs with i the item) to follow a Zipf distribution with pa-
rameter α = 2.0. Every node in the graph was assigned a
stream of length uniformly distributed in [500, 1000], consist-
ing of tuples < i, a >, where i was chosen with probability
proportional to mi and a ∈ [mi]. Globally, we obtained a
data stream of approximately 17 million tuples.

6.1 Accuracy of the estimation
A first set of experiments only concerned the accuracy of

the estimation provided by the sketches. We used counting
sketches corresponding to a precision ε = 0.1 with proba-
bility at least 1 − δ, where δ = 0.1. For each node in the
network, statistics were computed on the streams observed
within neighborhoods formed by i) all nodes at distance 1
and ii) all nodes within distance 2. For every statistics of in-
terest we considered the average of the estimates computed
over i) the 100 nodes with highest degrees and ii) a set of 100
nodes chosen uniformly at random. For each node and for
each statistic, we computed the average error with respect
to the exact value.

In estimating F0 (see Figure 2), we considered the two
counting sketches described in Subsection 4.1, i.e, the FM
sketch originally proposal by Flajolet and Martin [16], and
the BY sketch proposed by Bar-Yossef et al [6].

We observed that, when FM sketches are used, the count-
ing sketch provides approximations with error lower than
5% in most cases of the number of distinct items observed
by every node within its 1(2)-neighborhood. BY sketches
perform extremely well: their accuracy is comparable or
slightly better than that of FM sketches. The only issue
to consider is that the estimator adopted in [6] (see Subsec-
tion 4.1) is L ·M/v, with L = 96/ε2, that corresponds to a

3URL: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

6

PROCESSITEM(LS, GS, i, a, l)

Require: LS, GS: SKETCH, i: item, a: attribute, l:
distance

1: LS = UPDATESKETCH(LS, i, a)
2: GS = UPDATESKETCH(GS, i, a)
3: Stat = GENSTAT(LS)
4: if DIFF(Stat, Stat0) > threshold then
5: MS = BUILDMESSAGE(LS, l)
6: Send MS to u’s neighbours
7: Stat0 = Stat
8: end if

PROCESSMESSAGE(GS, MS)

Require: GS, SKETCH, MS: message
1: S = SKETCH(MS)
2: GS = MERGESKETCH(GS, S)
3: h = TTL(MS)
4: if h > 0 then
5: h = h - 1
6: MS = BUILDMESSAGE(S, h)
7: Send MS to u’s neighbours
8: else
9: Drop MS
10: end if

Figure 1: Generic algorithm for continuous monitoring of statistics within distance l.

●
●

●
●

●
●

●
● ●

●

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Accuracy of estimation for F0 within distance 2

Time

A
vg

 e
rr

or

1 2 3 4 5 6 7 8 9 10

●
●

●
●

●
●

●
● ●

●
●

●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

● ●

●

●

● ● ● ●
●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

θθ == 0.1
θθ == 0.2
θθ == 0.4
θθ == 0.8
θθ == 2
θθ == 10
θθ == 20

Figure 4: Average error in estimating F0, l = 2 at ten
checkpoints for different triggering thresholds.

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
50

00
10

00
0

20
00

0

Number of message updates required to estimate F0 within distance 2

Time

N
. m

es
sa

ge
s

1 2 3 4 5 6 7 8 9 10

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
●

●
● ● ● ●

●

●
●

●
●

●
● ● ● ●

●

●

●

●

θθ == 0.1
θθ == 0.2
θθ == 0.4
θθ == 0.8
θθ == 2
θθ == 10
θθ == 20

Figure 5: Messages sent in estimating F0, l = 2 at ten
checkpoints for different triggering thresholds.

value of 9 600 in our case. This implies that when using BY
sketches, the algorithm always returns an estimate no lower
than this value. Since L = 96/ε2 is a constant for fixed ε, we
simply keep the exact count as long as this remains below
this value. In the rest of this section we retain FM sketches,
which are simpler to implement and provide an accuracy
that is totally adequate for our purposes. Extended results
will appear in the full paper.

Accuracy for F1 is always below 4%. For the sake of space
we do not discuss these results here.

In the estimation of F2 (see Figure 3), we used a value of d
(number of dimensions of the projected space) equal to 200,
which is much lower than the one requested by theoretical
analysis (2567) for the values ε and δ we consider, which

may suggest that the analysis can be improved. Complete
results will be reported in the full paper. In general, as
predicted by our analysis, the quality of results is very good
for synthetic data, which were generated according to a very
skewed distribution following a Zipf’s law with parameter
α = 2. On the converse, larger errors are observed on real
data that exhibit a much lower skewness than that requested
by our theoretical analysis: we observed very small values
(in the range [0.6, 0.8]) of the Zipf’s parameter α for the
streams at all the nodes involved in the measurements.

6.2 Communication and tradeoffs
The approach we adopt to optimize communication was

described in the previous section. It basically consist of the
following: every node u sends a message update for a given
counter to its immediate neighbors whenever the local esti-
mation computed for that counter exceeds the last update
that was sent by more than a factor 1 + θ/Nl(u).

In order to evaluate the communication costs of the devel-
oped methods, we simulated a scenario in which the nodes
in the network start to process their local stream simulta-
neously. We computed F0 and F2 keeping track of the total
number of message updates sent by the algorithm at ten
equally spaced checkpoints, which were fixed by identifying
ten intervals of uniform length within the stream of events
observed at each node. We considered different values of θ
(θ = 0.1, θ = 0.2 and θ = 0.4 and θ = 0.8) to vary the
local threshold used by every node to decide whether send
or not to send a new message update after processing a new
event. For the sake of space, we omit results for F2 and we
present and discuss below accuracy/communication trade-
offs for the critical F0 estimation primitive for distance-2
neighbourhoods. Results for distance 1 are similar and will
be given in the full paper.

Figures 4 and 5 shows the results concerning the estima-
tion of F0 within distance l = 2. The general trend is clear:
at the beginning, so for the first checkpoints, the number of
first-time observations of items grow faster. Accordingly, we
observe a steep increase in the number of messages sent. The
estimations stabilize after few checkpoints and the amount
of exchanged messages drop dramatically. Also, since most
distinct items are observed in the first part of the stream,
nodes gain very early a very good accuracy in their estima-
tions of F0: for θ ∈ [0.1, 0.2, 0.4, 0.8] average error at the
first checkpoint is already around 3− 4%.

We experimented with higher values of θ (θ ∈ [2, 10, 20]),
in order to trade communication with degrading accuracy
too much. While θ = 2 does not change the picture, for
higher values of θ we observed a significant drop in the total

7

●
●

●

●
●

●

●●

●

●●

●

●

●

●●
●

●

●

●
●●●●●
●
●●
●
●

●

●
●

●

FM,l=1,R,T FM,l=2,R,T FM,l=2,R,RA FM,l=1,S,T BY,l=1,S,T FM,l=2,S,T BY,l=2,S,T FM,l=2,S,RA BY,l=2,S,RA

0.
00

0.
05

0.
10

0.
15

Accuracy of estimation for F0
A

ve
ra

ge
 e

rr
or

Figure 2: Accuracy of the estimation computed for F0 (See Legenda below)

●
●
●
●
●

●

●

●

●

●
●

●

●
●

●●●

●
●

●
●
●

●

●

FM,l=1,R,T FM,l=1,R,RA FM,l=2,R,T FM,l=2,R,RA FM,l=1,S,T FM,l=1,S,RA FM,l=2,S,T FM,l=2,S,RA

0.
0

0.
5

1.
0

1.
5

2.
0

Accuracy of estimation for F2

A
ve

ra
ge

 e
rr

or

LEGEND
FM Sketches by Flajolet et Martin
BY Sketches by Bar-Yosseff et al.
R Real data
S Synthetic data
T Nodes with highest degree
RA Random nodes
l Radius of the neighborhood

Figure 3: Accuracy of the estimation computed for F2

number of message updates (by a factor in [1.7, 2]). Interest-
ingly, the quality of approximation still remains very good:
With θ = 10, the average error gets lower than 10% as soon
as the third checkpoint is reached, and it is around 7% at
the end of the observation. For θ = 20, the error gets lower
than 15% at the third checkpoint, and it is not greater than
10% at the last checkpoint.

Memory requirements. We implemented sketches for F0

and F1 using at most 575 bytes per sketch. This figure is
compatible with commercial sensor networks platforms, al-
though packet sizes have typically smaller values4. In the
case of F2, memory requirements are between 145 and 224
KB per sensing node. This is compatible with applications
that use modern sensors such as Intel’s Imote2, which are
powerful but are also characterized by higher energy con-
sumption, and thus are not a proper choice in several scenar-
ios where long-life guarantees are a crucial issue, like wireless
sensor networks for environmental monitoring, which may
be required to work for more than one year. In these cases,

4This can be overcome by having a constant number of pack-
ets per update message or by reducing the size of update
messages, as we show in the full paper.

application designers typically prefer less powerful devices
such as TelosB, MicaZ and TinyNode184, which are pro-
vided with less memory (∼ 10 KB RAM) but have smaller
consumption.

7. CONCLUSIONS
In this paper we have presented a set of algorithms for

computing high-quality approximations of the frequency mo-
ments on the data observed within a neighborhood of limited
size. The algorithms operate in a fully-decentralized setting
and use sub-linear space at every node in the network.

We have provided theoretical analysis of scenarios not con-
sidered in previous work. We have presented experimen-
tal evidence of the efficiency and accuracy of our strate-
gies on realistic simulated scenarios. We have analyzed sim-
ple strategies that minimize the amount of communication
needed to update the aggregate estimations when new events
are observed. In future work, we plan to demonstrate the
usefulness of our algorithms by using them to develop tools
for practical applications, like distributed consensus in de-
centralized systems or measurement of statistics in sensor
networks.

8

We remark the fact that the distributed streaming model
is a natural extension of the semi-streaming model [14] which
has been used, for example, for approximating the local
number of triangles which every node belonging to a net-
work is involved in [7]. Hence, we believe that our results
can be extended to assess the quality of single components
in networks of large scale.

From a theoretical point of view, we plan to afford a
deeper analysis, aimed at proving a Ω(

√
n) lower bound for

the amount of memory needed to estimate the second fre-
quency moment in distributed settings that have to cope
with data duplication.

8. ACKNOWLEDGMENTS
We are very thankful to Ugo Colesanti for several helpful

discussions.

9. REFERENCES
[1] D. Achlioptas. Database-friendly random projections:

Johnson-lindenstrauss with binary coins. J. Comput.
Syst. Sci, 66(4):671–687, 2003.

[2] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.
Tracking join and self-join sizes in limited storage. J.
Comput. Syst. Sci., 64(3):719–747, 2002.

[3] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999.

[4] M. Arlitt and T. Jin. 1998 world cup web site access
logs, August 1998.

[5] B. Babcock and C. Olston. Distributed top-k
monitoring. In SIGMOD Conference, pages 28–39,
2003.

[6] Z. Bar-Yossef, T. S. Jayram, R. Kumar,
D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Proceedings of the 6th
International Workshop on Randomization and
Approximation Techniques, pages 1–10, Cambridge,
Ma, USA, 2002. Springer-Verlag.

[7] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In KDD ’08, pages 16–24,
New York, NY, USA, 2008. ACM.

[8] J. Considine, F. Li, G. Kollios, and J. W. Byers.
Approximate aggregation techniques for sensor
databases. In ICDE, pages 449–460, 2004.

[9] G. Cormode and M. N. Garofalakis. Streaming in a
connected world. In VLDB, page 1266, 2006.

[10] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. J. Algorithms, 55(1):58–75, 2005.

[11] G. Cormode and S. Muthukrishnan. Space efficient
mining of multigraph streams. In ACM, editor,
Proceedings of the Twenty-Fourth ACM Symposium on
Principles of Database Systems, pages 271–282. ACM
Press, 2005.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang.
What’s different: Distributed, continuous monitoring
of duplicate-resilient aggregates on data streams. In
Proceedings of the 22nd International Conference on
Data Engineering, page 57. IEEE Computer Society,
2006.

[13] S. Dasgupta and A. Gupta. An elementary proof of a
theorem of johnson and lindenstrauss. Random Struct.
Algorithms, 22(1):60–65, 2003.

[14] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. In ICALP, 2004.

[15] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An approximate L1-difference
algorithm for massive data streams. SIAM J. Comput,
32(1):131–151, 2002.

[16] P. Flajolet and N. G. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31(2):182–209, 1985.

[17] P. B. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports.
In VLDB, pages 541–550, 2001.

[18] M. Greenwald and S. Khanna. Power-conserving
computation of order-statistics over sensor networks.
In PODS, pages 275–285, 2004.

[19] M. Hadjieleftheriou, J. Byers, and G. Kollios. Robust
sketching and aggregation of distributed data streams.
Technical Report 2005-011, CS Department, Boston
University, 2005.

[20] P. Indyk. Stable distributions, pseudorandom
generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006.

[21] S. R. Kashyap, S. Deb, K. V. M. Naidu, R. Rastogi,
and A. Srinivasan. Efficient gossip-based aggregate
computation. In PODS, pages 308–317, 2006.

[22] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In FOCS,
pages 482–491, 2003.

[23] S. Nath, P. B. Gibbons, S. Seshan, and Z. R.
Anderson. Synopsis diffusion for robust aggregation in
sensor networks. In Proceedings of the 2nd
International Conference on Embedded Networked
Sensor Systems, pages 250–262. ACM, 2004.

[24] Y. Shavitt and E. Shir. Dimes: Let the internet
measure itself. CoRR, abs/cs/0506099, 2005.

9

