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We propose link-based techniques for automatic detection of Web spam, a term referring to pages
which use deceptive techniques to obtain undeservedly high scores in search engines. The use of
Web spam is widespread and difficult to solve, mostly due to the large size of the Web which means
that, in practice, many algorithms are infeasible.

We perform a statistical analysis of a large collection of Web pages. In particular, we compute
statistics of the links in the vicinity of every Web page applying rank propagation and probabilistic
counting over the entire Web graph in a scalable way. These statistical features are used to build
Web spam classifiers which only consider the link structure of the Web, regardless of page contents.
We then present a study of the performance of each of the classifiers alone, as well as their combined
performance, by testing them over a large collection of Web link spam. After tenfold cross-validation,
our best classifiers have a performance comparable to that of state-of-the-art spam classifiers that
use content attributes, but are orthogonal to content-based methods.
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1. INTRODUCTION

The Web is both an excellent medium for sharing information and an attrac-
tive platform for delivering products and services. This platform is, to some
extent, mediated by search engines in order to meet the needs of users seek-
ing information. Search engines are the “dragons” that keep a valuable trea-
sure: information [Gori and Witten 2005]. Given the vast amount of infor-
mation available on the Web, it is customary to answer queries with only a
small set of results (typically 10 or 20 pages at most). Search engines must
then rank Web pages, in order to create a short list of high-quality results for
users.

On the other side, the Web contains numerous profit-seeking ventures that
are attracted by the prospect of reaching millions of users at a very low
cost. A large fraction of the visits to a Web site originate from search en-
gines and most of the users click on the first few results in a search engine.
Therefore, there is an economic incentive for manipulating search engines’
listings by creating pages that score high independently of their real merit.
In practice such manipulation is widespread and, in many cases, successful.
For instance, Eiron et al. [2004] report that “among the top 20 URLs in our
100 million page PageRank calculation (...) 11 were pornographic, and these
high positions appear to have all been achieved using the same form of link
manipulation.”

The term spam has been commonly used in the Internet era to refer to un-
solicited (and possibly commercial) bulk messages. The most common form
of electronic spam is e-mail spam, but in practice each new communication
medium has created a new opportunity for sending unsolicited messages.
These days there are many types of electronic spam, including spam by in-
stant messaging (spim), spam by internet telephony (spi¢), spam by mobile
phone, by fax, etc. The Web is not absent from this list, but as the request-
response paradigm of the HTTP protocol makes it impossible for spammers
to actually send pages directly to the users, spammers try to deceive search
engines and thus break the trust that search engines establish with their
users.

1.1 What Is Web Spam?

All deceptive actions that try to increase the ranking of a page in search en-
gines are generally referred to as Web spam or spamdexing (a portmanteau, or
combination, of spam and indexing). A spam page or host is a page or host that
either is used for spamming or receives a substantial amount of its score from
other spam pages.

An alternative way of defining Web spam could be any attempt to get
“an unjustifiably favorable relevance or importance score for some web
page, considering the page’s true value” [Gyongyi and Garcia-Molina 2005].
A spam page is a page which is used for spamming or receives a sub-
stantial amount of its score from other spam pages. Another definition of
spam [Perkins 2001] is “any attempt to deceive a search engine’s relevancy
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algorithm” or simply “anything that would not be done if search engines did not
exist.”

Seeing as there are many steps which content providers can take to im-
prove the ranking of their Web sites, and given that there is an important
subjective element in the evaluation of the relevance of Web pages, to offer an
exact definition of Web spam would be misleading. Indeed, there is a large gray
area between ethical Search Engine Optimization (SEO) services and uneth-
ical spam. SEO services range from ensuring that Web pages are indexable
by Web crawlers to the creation of thousands or millions of fake pages aimed
at deceiving search engine ranking algorithms. Our main criteria for deciding
in borderline cases is the perceived effort spent by Web authors on provid-
ing good content, against the effort spent on trying to score highly in search
engines.

The relationship between a Web site administrator trying to rank high in
a search engine and the search engine administrator is an adversarial one,
in which any unmerited gain in ranking for a Web site results in a loss of
accuracy for the search engine. This relationship is however extremely complex
in nature, both because it is mediated by the non univocal attitudes of customers
towards spam, and because more than one form of Web spam exists which
involves search engines. For example, we do not take into consideration click
spam, an issue which also affects search engines through fraudulent clicking
in advertising and search results.

1.2 Link-Based Web Spam (Topological Spam)

There are many techniques for Web spam [Gyongyi and Garcia-Molina 2005],
and they can be broadly classified in two groups: content (or keyword) spam,
and link spam.

Content spam refers to changes in the content of the pages, for instance by
inserting a large number of keywords [Davison 2000a; Drost and Scheffer 2005].
In [Ntoulas et al. 2006], it is shown that 82—86% of spam pages of this type can
be detected by an automatic classifier. The features used for the classification
include, amongst others: the number of words in the text of the page, the number
of hyperlinks, the number of words in the title of the pages, the compressibility
(redundancy) of the content, etc.

Link spam includes changes to the link structure of the sites, by creating
link farms [Zhang et al. 2004; Baeza-Yates et al. 2005]. A link farm is a densely
connected set of pages, created explicitly with the purpose of deceiving a link-
based ranking algorithm. Zhang et al. [2004] define this form of collusion as
the “manipulation of the link structure by a group of users with the intent of
improving the rating of one or more users in the group.” The pages in Figure 1
are part of link farms.

The targets of our spam-detection algorithms are the pages that receive most
of their link-based ranking by participating in link farms. A page that partic-
ipates in a link farm may have a high in-degree, but little relationship with
the rest of the graph. In Figure 2, we show a schematic diagram depicting the
links around a spam page and a normal page. Link farms can receive links
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Fig. 1. Examples of Web spam pages belonging to link farms. While the page on the left has content
features that can help to identify it as a spam page, the page on the right looks more similar to a
“normal” page and thus can be more easily detected by its link attributes.

Spam Normal
page page

Link Normal
farm pages

Fig. 2. Schematic depiction of the neighborhood of a page participating in a link farm (left) and a
normal page (right). A link farm is a densely connected subgraph, with little relationship with the
rest of the Web, but not necessarily disconnected.

from nonspam sites by buying advertising, or by buying expired domains used
previously for legitimate purposes.

A page that participates in a link farm, such as the one depicted in Fig-
ure 2, may have a high in-degree, but little relationship with the rest of the
graph. We refer to spamming achieved by using link farms as topological spam-
ming. In particular, we heuristically define a topological spammer as one that
achieves its goal by means of a link farm that has topological and spectral graph
properties that statistically differ from those exhibited by nonspam pages. This
definition embraces the cases considered in Gibson et al. [2005], and their
method based on “shingles” can be also applied in detecting some types of link
farms (those that are dense graphs). It is clear that a spammer can construct
link farms that exhibit statistical and spectral properties that do not differ from
those of normal pages. An exclusively topological approach is clearly unfit in
this case. Still, even achieving this might be a non trivial task for a spammer.
In fact, as Figure 2 suggests, even when large link farms are employed (possi-
bly copying entire portions of legitimate Web sites), most of the target page’s
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score will probably originate from pages that are relatively close while the link
farm itself, even if big, will constitute only a small fraction of the entire Web.
In contrast, the rank of a highly authoritative, legitimate page is more likely
to originate from a much larger portion of the entire Web.

Link-based and content-based analysis offer two orthogonal approaches. We
do not believe that these approaches are alternative. On the contrary, they
should be used together.

On one hand, in fact, link-based analysis does not capture all possible cases
of spamming, since some spam pages appear to have spectral and topological
properties that are statistically close to those exhibited by nonspam pages. In
this case, content-based analysis can prove extremely useful.

On the other hand, content-based analysis seems less resilient to changes in
spammers’ strategies, in much the same way that content-based techniques for
detecting email spamming are. For instance, a spammer could copy an entire
Web site (creating a set of pages that may be able to pass all tests for content
spam detection) and change a few out-links in every page to point to the target
page. This may be a relatively inexpensive task to perform in an automatic way,
whereas creating, maintaining and reorganizing a link farm, possibly spanning
more than one domain, is likely to be economically more expensive.

It is important to note that there are some types of Web spam that are not
completely link-based, and it is very likely that there are some hybrid struc-
tures which combine both link farms (for achieving a high link-based score) and
content-based spam, having a few links, to avoid detection. In our opinion, the
approach whereby content features, link-based features and user interaction
(e.g., data collected via a toolbar or by observing clicks in search engine results)
are mixed, should work better in practice than a pure link-based method. In
this article, we focus on detecting link farms, since they seem to be an important
ingredient of current spam activity.

A Web search engine operator must consider that “any evaluation strategy
which counts replicable features of Web pages is prone to manipulation” [Page
et al. 1998]. Fortunately, from the search engine’s perspective, “victory does not
require perfection, just a rate of detection that alters the economic balance for
a would-be spammer” [Ntoulas et al. 2006].

1.3 Our Contributions

Fetterly et al. [2004] hypothesized that studying the distribution of statistics
about pages could be a good way of detecting spam pages, as “in a number of
these distributions, outlier values are associated with web spam.” The approach
of our article is to use link-based statistics and apply them to create classifiers
suitable for Web spam detection. We include both algorithmic and experimental
contributions.

On the algorithmic side, we adapt two link-based algorithms that tackle the
issue of Web spam detection. We introduce a damping function for rank propa-
gation [Baeza-Yates et al. 2006] that provides a metric that helps in separating
spam from nonspam pages. Then we propose an approximate counting tech-
nique that can be easily “embedded” within a rank computation. This sheds
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new light upon and simplifies the method proposed in Palmer et al. [2002],
suggesting that the base rank propagation algorithm provides a general frame-
work for computing several relevant metrics. These algorithms were described
in preliminary form in Becchetti et al. [2006b]; here we provide bounds on their
running time and error rate.

On the experimental side, we describe an automatic classifier that only uses
link-based attributes, without looking at Web page content, still achieving a
precision that is comparable to that of the best spam classifiers that use content
analysis. This is an important point, since in many cases spam pages exhibit
contents that look “normal.” Experimental results over a collection tagged by
only one person (one of the authors of this article) were presented in Becchetti
et al. [2006a]; here we present experimental results over a larger collection
tagged by over 20 volunteers [Castillo et al. 2006a].

2. ALGORITHMIC FRAMEWORK

In general, we want to explore the neighborhood of a page and see if the link
structure around it appears to be artificially generated with the purpose of
increasing its rank. We also want to verify if this link structure is the result of a
bounded amount of work, restricted to a particular zone of the Web graph under
the control of a single agent. This imposes two algorithmic challenges: the first
one is how to simultaneously compute statistics about the neighborhood of every
page in a huge Web graph, the second is what to do with this information once
it is computed and how to use it to detect Web spam and demote spam pages.

We view our set of Web pages as a Web graph, that is, a graph G = (V, E) in
which the set V corresponds to Web pages in a subset of the Web, and every link
(x, ¥) € E corresponds to a hyperlink from page x to page y in the collection.
For concreteness, the total number of nodes N = |V| in the full Web indexable
by search engines is in the order of 10'° [Gulli and Signorini 2005], and the
typical number of links per Web page is between 20 and 30.

2.1 Supporters

Link analysis algorithms assume that every link represents an endorsement,
in the sense that if there is a link from page x to page y, then the author of
page x is recommending page y. Following Benczur et al. [2005], we call x a
supporter of page y at distance d, if the shortest path from x to y formed by
links in E has length d. The set of supporters of a page are all the other pages
that contribute towards its link-based ranking.

In Figure 3 we plot the distribution of the fraction of distinct supporters at
increasing distances for a random sample of nodes in four samples of the Web
(the datasets used are described in detail in Section 5.1). Sample sizes vary
from ~500 to a few thousand nodes. We can see that the number of new distinct
supporters increases up to a certain distance, and then decreases, as the graph
is finite in size and we approach its effective diameter.

Figure 2 exemplifies the expected structure of a synthetic, automatically
generated link farm. In particular, spam pages are likely to have a large number
of distinct supporters at short distances, but this number should be lower than
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Fig. 3. Distribution of the fraction of distinct supporters found at varying distances (normalized),
obtained by backward breadth-first visits from a sample of nodes, in four large Web graphs [Baeza-
Yates et al. 2006].

expected at higher distances with respect to legitimate, high-ranked sites. This
is due to the fact that, even though spammers can synthetically generate large
Web sites or replicate large portions of legitimate ones containing thousands of
pages, they nevertheless control only a small fraction of the Web.

We expect that the distribution of the fraction of distinct supporters with
respect to distance obtained for a high-ranked page is different from the
distribution obtained for a low-ranked page. In order to put this theory into
practice, we calculated the PageRank of the pages in the eu.int (European
Union) subdomain. We chose this domain because it is a large, entirely spam-
free, subset of the Web. We grouped the pages into 10 buckets according to their
position in the list ordered by PageRank. Figure 4 plots the distribution of sup-
porters for a sample of pages in three of these buckets having high, medium
and low ranking respectively.

As expected, high-ranked pages have a large number of supporters after a
few levels, while low-ranked pages do not. Note that if two pages belong to
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Fig. 4. Distribution of the fraction of distinct supporters at different distances. The curves are
pages in different PageRank buckets. There are 10 buckets in total (we plot only 3 for clarity) and
each bucket has 10% of the pages. Bucket number 1 has the pages with the highest PageRank and
bucket number 10 the pages with the lowest PageRank.

the same strongly connected component of the Web, then eventually their total
number of supporters will converge after a certain distance. In that case the
areas below the curves will be equal.

As shown in Figure 2, we expect that pages participating in a link farm
present anomalies in their distribution of supporters. A major issue is that com-
puting this distribution for all the nodes in a large Web graph is computationally
very expensive. A straightforward approach is to repeat a reverse breadth-first
search from each node of the graph, and marking nodes as they are visited
[Lipton and Naughton 1989]; the problem is that this would require Q(N?)
memory for the marks if done in parallel or Q(N?2) time to repeat a BFS from
each one of the N nodes if done sequentially. A possible solution could be to
compute the supporters only for a subset of “suspicious” nodes; the problem
with this approach is that we do not know a priori which nodes are spammers.
An efficient solution will be presented in Section 4.

2.2 Semi-Streaming Graph Algorithms

Given the large/huge size of typical data sets used in Web Information Retrieval,
complexity issues are very important. The algorithms we can use for Web spam
detection have to scale well to large collections. This imposes severe restrictions
on the computational and/or space complexity of viable algorithmic solutions.
This section describes the specific model we used for these restrictions, before
presenting the algorithms in Sections 3 and 4.

A first approach to modeling these restrictions could be the streaming model
of computation [Henzinger et al. 1999]. However, the restrictions of the classical
stream model are too severe and are hardly compatible with the problems we
are interested in.

In light of the above remarks, we decided to restrict to algorithmic solutions
whose space and time complexity is compatible with the semi-streaming model
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Require: graph G = (V, E), score vector S
1: INITIALIZE(S)

2: while not CONVERGED do

3: forsrc:1...|V|do

4 for all links from src to dest do
5: COMPUTE(S, src, dest)

6 end for

7 end for

8:  POST_PROCESS(S)

9: end while

10: return S

Fig. 5. Generic link-analysis algorithm using a stream model. The score vector S represents any
metric, and it must use O(V log N) bits. The number of iterations should be O(log N) in the worst
case.

of computation [Feigenbaum et al. 2004; Demetrescu et al. 2006]. This implies
a semi-external memory constraint [Vitter 2001] and thus reflects many signif-
icant constraints arising in practice. In this model, the graph is stored on disk
as an adjacency list and no random access is possible; that is, we only allow
sequential access. Every computation involves a limited number of sequential
scans of data stored in secondary memory [Haveliwala 1999].

Our algorithms also use an amount of main memory in the order of the
number of nodes, whereas an amount of memory in the order of the number
of edges may not be feasible. We assume that we have O(V log N) bits of main
(random access) memory; that is, in general there is enough memory to store
some limited amount of data about each vertex, but probably not to store all the
links of the graph in main memory.! We impose a further constraint; that is,
the algorithm should perform a small number of passes over the stream data,
at most O(log V).

We assume no previous knowledge about the graph, so we do not know a
priori if a particular node is suspicious of being a spam or not. For this reason,
there are some semi-streamed algorithms on a Web graph that we cannot use
for Web spam detection in our framework. If we have to compute a metric which
assigns a value to every vertex, for example, a score, we obviously cannot afford
to run this algorithm again for every node in the graph, due to the large size of
the data set.

As an example, suppose we want to measure the centrality of nodes. If we
use the streamed version of the standard breadth-first search (BFS) algorithm,
we are not complying to this requirement, since the outcome would be a BFS
tree for a specific node, which is not enough for computing the centrality of all
the nodes in the graph. Conversely, an algorithm such as PageRank computes
a score for all nodes in the graph at the same time.

The general sketch of the type of semi-streamed graph algorithms in which
we are interested, is shown in Figure 5.

1 As to this point, accurately estimating the function that relates the number of links to the number
of vertices in the Web is not a trivial task. Recent work on other complex networks for which our
algorithms might be of independent interest suggests [Leskovec et al. 2005] that this relationship
is Q(N log N) in many cases.
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According to Figure 5, we initialize a vector S that will contain some metric
and possibly also auxiliary information. The size of S, |S|,is O(N). Then we scan
the graph sequentially updating S according to observations on the graph. Then
we post-process S and start over. This algorithmic sketch essentially captures
all feasible algorithms on a large graph.

3. TRUNCATED PAGERANK

In Becchetti et al. [2006b] we described Truncated PageRank, a link-based
ranking function that reduces the importance of neighbors that are considered
to be topologically “close” to the target node. In Zhang et al. [2004] it is shown
that spam pages should be very sensitive to changes in the damping factor of
the PageRank calculation; with Truncated PageRank we modify not only the
damping factor but the whole damping function.

Let Ay, be the citation matrix of graph G = (V, E), that is, a,, = 1 <
(x,y) € E. Let P be the row-normalized version of the citation matrix, such
that all rows sum up to one, and rows of zeros are replaced by rows of 1/N to
avoid the effect of rank “sinks.”

A functional ranking [Baeza-Yates et al. 2006] is a link-based ranking algo-
rithm to compute a scoring vector W of the form:

2, damping(¢)
t=

where damping(¢) is a decreasing function on ¢, the lengths of the paths. In
particular, PageRank [Page et al. 1998] is the most widely known functional
ranking, in which the damping function is exponentially decreasing, namely,
damping(t) = (1 — a)a! where « is a damping factor between 0 and 1, typically
0.85.

A page participating in a link farm can gain a high PageRank score because
it has many in-links, that is, supporters that are topologically close to the target
node. Intuitively, a possible way of demoting those pages could be to consider a
damping function that ignores the direct contribution of the first levels of links,
such as:

damliing(t)

damping(?) 0 =T ce
amping Cat t>T -
T t
where C is a normalization constant and « is the damping factor used for
PageRank. The normalization constant is such that ) ,°, damping(t) = 1, so
C=(1-a)/al).

This function penalizes pages that obtain a large share of their PageRank
from the first few levels of links; we call the corresponding functional rank-
ing the Truncated PageRank of a page. This is similar to PageRank, except
that supporters that are too “close” to a target node do not contribute to its
ranking.
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Require: N: number of nodes, 0 < a < 1: damping factor, T> —1: truncation
distance

1: fori: 1 ... N do {Initialization}

2. R[] — (1—a)/((aT+)N)
3 if T> 0 then
4 Score[i] « 0
5:  else {Calculate normal PageRank}
6 Score[i] < R[]
7 end if
8: end for
9: distance =1
10: while not converged do
11:  Aux <0
12:  for src: 1 ... N do {Follow links in the graph}

13: for all link from src to dest do

14: Aux[dest] < Aux[dest] + R[src]/outdegree(src)
15: end for

16:  end for

17: fori: 1... N do {Apply damping factor a}

18: R[i] « Aux[i] xa

19: if distance > T then {Add to ranking value}

20: Score[i] « Score[i] + R]i]

21: end if

22: end for

23:  distance = distance +1
24: end while

25: return Score

Fig. 6. TruncatedPageRank algorithm.

For calculating the Truncated PageRank, we use the following auxiliary
construction:

C

R(O) - R(t) — R(t_l)P,
N o
and we compute the truncated PageRank by using:
w= ) RY.
t=T+1

The algorithm is presented in Figure 6 and follows the general algorithmic
sketch of Figure 5. For the calculation, it is important to keep the score and the
accumulator R separated in the calculation, since we discard the first levels,
or we may end up with only zeros in the output. Note that, when T' = —1, we
compute the normal PageRank. In fact, writing W in closed form [Baeza-Yates
et al. 2006] we have W = £(I —aP)~}(«P)"*! which shows an additional damp-
ing factor when 7' > —1.

We compared the values obtained with PageRank with those of Truncated-
PageRank in the UK-2002 dataset, for values of 7' from 1 to 4. Figure 7 shows
the result (not contained in Baeza-Yates et al. [2006]). As expected, both mea-
sures are closely correlated, and the correlation decreases as more levels are
truncated.

We do not argue that Truncated PageRank should be used as a sub-
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Fig. 7. Comparing PageRank and Truncated PageRank with 7' = 1, 2, 3, 4. Each dot represents a
home page in the uk-2002 graph. The correlation is high and decreases as more levels are truncated.

stitute for PageRank, but we show in Section 5 that the ratio between
Truncated PageRank and PageRank is extremely valuable for detecting link
spam.

In practice, for calculating the Truncated PageRank it is easier to save “snap-
shots” with the partial PageRank values obtained at an intermediate point of
the computation, and then use those values to indirectly calculate the Trun-
cated PageRank. Thus, computing Truncated PageRank has no extra cost (in
terms of processing) for a search engine if the search engine already computes
the PageRank vector for the Web graph.

It may be worth noting that, if T’ is known, a spammer can partially address
the challenge posed by Truncated PageRank by suitably designing a link farm,
for example, by inserting a chain of length 7' — 1 between the link farm and the
real target page. Notice, however, that in this case the spammer still suffers
from an «” decay in the authority of the target page.

4. ESTIMATION OF SUPPORTERS

In this section, we describe a method for the estimation of the number of sup-
porters of each node in the graph. Our method computes an estimation of the
number of supporters for all vertices in parallel at the same time and can be
viewed as a generalization of the ANF algorithm [Palmer et al. 2002].

Since exactly computing the number of supporters is infeasible on a large
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Fig. 8. Schematic depiction of the bit propagation algorithm with two iterations.

Web graph, we use probabilistic counting [Cohen 1997; Flajolet and Martin
1985; Durand and Flajolet 2003]. As to this point, we propose a refinement of
the classical probabilistic counting algorithm proposed in Flajolet and Martin
[1985] and adopted in Palmer et al. [2002]. Our probabilistic counting algorithm
turns out to be more accurate than Palmer et al. [2002] when the distance un-
der consideration is small, as is the case in the application we consider. As
an algorithmic engineering contribution, our probabilistic counting algorithm
is implemented as a generalization of the streaming algorithm used for Page-
Rank computation [Page et al. 1998; Haveliwala 1999]. As a theoretical contri-
bution, the probabilistic analysis of our base algorithm turns out to be consid-
erably simpler than the one given in [Flajolet and Martin 1985] for the original
one.

4.1 General Algorithm

We start by assigning a vector of 2 random bits to each page. Assume we want
to estimate, for every page, the number of supporters within distance d. To this
purpose, the initial bit vectors of all pages are propagated for d steps using an
iterative computation as follows: For A = 1, ..., d, during the A-th iteration of
the algorithm, if page y has a link to page x, then the bit vector of page x is
updated as x < x OR y. As a result, at the end of the d-th iteration, for every
page x, the bit vector of x stores the cumulative OR of its initial value with all
initial bit vectors of pages within distance d from x. In Figure 8, two iterations
are shown.

Considering the properties of the OR operation, it is clear that, for every page
x, the number of 1’s in the associated bit vector cannot decrease as the process
above is iterated. Also, intuitively, if a page x has a larger number of distinct
supporters within distance d than another page y, the bit vector associated to
x will on the average tend to contain more 1’s than the bit vector associated

ACM Transactions on the Web, Vol. 2, No. 1, Article 2, Publication date: February 2008.



P1: OJL
tweb2-1-15 ACM-TRANSACTION February 5, 2008 21:2

2:14 L. Becchetti et al.
Require: N: number of nodes, d: distance, k: bits
1: for node : 1 ... N do {Every node}
2:  for bit: 1... k do {Every bit}

3: INIT(node,bit)

4:  end for

5: end for

6: for distance : 1...d do {Iteration step}
7: Aux « 0g

8: forsrc: 1... N do {Follow links in the graph}
9: for all links from src to dest do

10: Aux[dest] — Aux[dest] OR V/[src,]
11: end for

12:  end for

13: fornode: 1... N do

14: V[node,| < Aux[node]

15:  end for

16: end for

17: for node: 1... N do {Estimate supporters}
18:  Supporters[node| < ESTIMATE( V[node,] )
19: end for

20: return Supporters

Fig. 9. Bit-Propagation Algorithm for estimating the number of distinct supporters at distance
< d of all the nodes in the graph simultaneously.

to y.

As rigorously shown in Section 4.2, it turns out that, for every page x, the
average number of 1’s in the associated bit vector is a nonlinear, increasing
function of the number of supporters of x within distance d from it. Thus,
if we knew this average value exactly, we could determine, for every x, the
number of supporters within distance d exactly. This is not possible in gen-
eral, but this finding suggests a first, simple way to estimate the number of
distinct supporters that is described in Section 4.2. A more accurate estima-
tor, offering provable performance guarantees, is described and analyzed in
Section 4.3.

The algorithm, presented in Figure 9, can be efficiently implemented by using
bit operations if £ matches the word size of a particular machine architecture
(e.g.: 32 or 64 bits).

The structure is the same as the algorithm in Figure 6, allowing the estima-
tion of the number of supporters for all vertices in the graph to be computed
concurrently with the execution of Truncated PageRank and PageRank.

The basic algorithm requires O(kN) bits of memory, can operate over a
streamed version of the link graph stored as an adjacency list, and requires
to read the link graph d times. Its adaptive version, shown in Section 4.3, re-
quires the same amount of memory and reads the graph O(d log Np,.x(d)) times
on average, where Ny .x(d) is the maximum number of supporters at distance
at most d. In general, Np,.x(d) is normally much smaller than N, for the values
of d that are useful for our particular application.

Notation. Let v; be the bit vector associated with any page,i = 1,..., N.
Let x denote a specific page and let S(x, d) denote the set of supporters of this
page within some given distance d. Let N(x,d) = |S(x,d)| and Nyax(d) =
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max, N (x,d). For concreteness, and according to Figure 3, we are considering
typical values of d in the interval 1 < d < 20. For the sake of simplicity, in
what follows we write S(x) and N (x) for S(x,d) and N(x, d) whenever we are
considering a specific value of d .

4.2 Base Estimation Technique

A simple estimator can be obtained as follows:

INIT(node,bit): In the initialization step, the j-th bit of v; is set to 1 with
probability €, independently for everyi = 1,...,N and j = 1,...,k (e is a
parameter of the algorithm whose choice is explained below).

Since ¢ is fixed, we can reduce the number of calls to the random number
generator by generating a random number according to a geometric distribution
with parameter 1 — ¢ and then skipping a corresponding number of positions
before setting a 1. This is especially useful when ¢ is small.

ESTIMATE(V[node,]) Consider a page x, its bit vector v, and let X;(x) be its
i-th component, i = 1,...,%. By the properties of the OR operator and by the
independence of the X;(x)’s we have

PX;x)=1] = 1-1 -V,
Then, if B.(x) = Zle X ;(x), the following lemma obviously holds:

Lemma 1. For every x, if every bit of x’s label is set to 1 independently with
probability e:

E[B.(x)] =k —k(1—eN®.

For every x, B.(x) is a random variable and, whenever we run our algorithm,
we observe a realization of it. Notice that, from Lemma 1, if we knew E[B(x)]
we could compute N (x) exactly. In practice, for every run of our algorithm and
for every x we simply observe a realization B.(x) of B.(x). Our base estimator

1S:
_ B.
Nx) = log, ., <1 - (x)> .

k

If the variance of B.(x) is small, the value of B.(x) is likely to be close to E[ B.(x)]
and the estimator above is likely to provide accurate estimates of N(x). In
Figure 10 we show the result of applying the basic algorithm with ¢ = 1/N to
the 860,000-nodes eu.int graph using 32 and 64 bits, compared to the observed
distribution in a sample of nodes. It turns out that with these values of %,
the approximation at least captures the distribution of the average number
of supporters. However, this is not enough, since we are interested in having
accurate estimates on a per node basis. In particular, a fixed value ¢ of the
bit probability in the algorithm above might be a good choice for some nodes,
but not for others. More precisely, given a node x, a specific value ¢ for the
bit probability is a good choice to estimate N(x) when N(x) >~ 1/¢, while the
approximation is poor when N(x) >> 1/¢ or N(x) << 1/¢. In the former case,
there is good probability that all bits of B.(x) are 1, while in the latter we have
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Fig. 10. Comparison of the estimation of the average number of distinct supporters, against the
observed value, in a sample of nodes of the eu-int graph.

a good probability that they are all 0. In both cases, we are not able to provide
any guarantee as to the accuracy of our estimator. This motivates our next
algorithm, described in the following section.

4.3 An Adaptive Estimator

The main problem with the basic technique is that, given some number % of bits
to use, not all values of ¢ are likely to provide useful information. In particular,
N(x) can vary by orders of magnitudes as x varies. This means that for some
values of ¢, the computed value of B.(x) might be & (or 0, depending on N (x))
with relatively high probability. In order to circumvent this problem, we observe
that, if we knew N (x) and chose ¢ = 1/N(x), we would get:

1 N(x) 1
BB =k-k(1-55) =(1-0)k

where the approximation holds since lim,, , .,(1—1/n)" = 1/e and it is very good
for all values of N(x) of practical interest. Also, as a function of ¢, E[BE (x)] is
monotonically increasing in the interval (0, 1]. This means that, if we consider
a decreasing sequence of values of € and the corresponding realizations of B, (x),
we can reasonably expect to observe more than (1 — 1/e)k bits set to 1 when
€ > 1/N(x), with a transition to a value smaller than (1 —1/e)k when € becomes
sufficiently smaller than 1/N (x).

In practice, we apply the basic algorithm O(log(/N)) times as explained in
Figure 11. The basic idea is as follows: starting with a value ep,x (for instance,
€max = 1/2) we proceed by halving ¢ at each iteration, up to some value €p;,
(for instance, en;, = 1/N). Given x, ¢ will at some point take up some value
€(x) such that e(x) < 1/N(x) < 2¢(x). Ideally, when ¢ decreases from 2¢(x) to
€(x), the value observed for B.(x) should transit from a value larger to a value
smaller than (1 — 1/e)k. This does not hold deterministically of course, but we
can prove that it holds with a sufficiently high probability, if % is large enough
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Require: €pnin, €max limits

1: € <« €max

2: while € > €y and not all nodes have estimations do
3:  Run the Bit-Propagation algorithm with e
4:  for z such that Be(z) < (1 — 1/e) k for the first time do
5 Estimate N(z) « 1/e
6 end for
7. e—¢/2
8: end while
9: return N(z)

Fig. 11. Adaptive Bit-Propagation algorithm for estimating the number of distinct supporters of
all nodes in the graph. The algorithm calls the normal Bit-Propagation algorithm a number of
times with varying values of €.

and N (x) exceeds some suitable constant.
The following lemma follows immediately:

Lemma 2. Algorithm Adaptive Bit-Propagation iterates a number of times
that is at most 108s(€max/€min) < logy N.

The following theorem shows that the probability of N(x) deviating from
N (x) by more than a constant decays exponentially with %. The proof requires
some calculus, but the rough idea is rather simple: considering any page x,
the probability that B.(x) becomes smaller than (1 — 1/e)k for any value ¢ >
¢/N(x), ¢ > 1 a suitable constant, decays exponentially with £. Conversely,
the probability that the observed value of B.(x) never becomes smaller than
(1—1/e)k before € reaches a value smaller than 1/bN(x), b > 1 being a suitable
constant, is again exponentially decreasing in k.

THEOREM 1.

P[(W(x) > 3N(x))U (N(x) < @)} < log, N (x)e 0027k 4 o=0.012k

for every page x such that N(x) > 10.

Proor. For the sake of readability, the proof of the theorem has been moved
to the appendix.? O

In what follows, we denote by F_(x) the first value of ¢ such that B.(x) <
(1 — 1/e)k; that is, B.(x) > (1 — 1/e)k for ¢ = 2F _(x),4F_(x), ..., €max. The
following theorem bounds the expected number of times the algorithm reads
the graph:

THEOREM 2. If 0.0392% > InN + Inlogy N, the Adaptive Bit-Propagation
algorithm reads the graph O(d log Nyax(d)) times in the average in order to
compute the number of supporters within distance d.

Proor. Since each invocation of the Bit-Propagation Algorithm reads the
graph d times, it is enough to prove that the while cycle of the Adaptive Bit-
Propagation algorithm is iterated O(log Ny ax(d)) times in the average when

2For N(x) < 10 the bound is still exponentially decreasing in %, but the constants in the exponent
are lower and we cannot guarantee high accuracy for typical values of .
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estimating the number of supporters within distance d . Let I(d) be the number
of iterations and note that I(d) < logy N deterministically by Lemma 2. We
start by proving that, for every page x, F'_(x) > e(x)/4 with high probability. To
this aim, observe that

N@) N@)
E[B.wsx)] = k—Fk (1 - %) <k—Fk (1 ! )

" 4N(x)
025k < 1 (1 — 1)k,
2 e

where the third inequality follows recalling Fact 1 and computing the expres-
sion for N(x) = 1. As a consequence:

P|:B€(x>/4(x) > <1 — %) ki|

where the second inequality follows by the Chernoff bound with § = 1, while
the third follows since

IA

IA

P[Bc()/4(x) = 2E[Be(x)/4(x)]]

E[B()4®)]
< e T < 00392k

b

Here, the second inequality follows since e(x) > 1/2N(x) by definition while,
using Fact 1, (1 — 1/8N (x))N® is upper bounded by letting N(x) — oco. As a
consequence,

1

N
P[Elx cF_(x) < e(x)/4] < P|:U F_(j) < e(x)/4:| < Ne 00392k _ m

Jj=1
whenever 0.0392% > In N + Inlog, N. Hence we have:

E[1(d)]

IA

4+ 10g2(Nmax(d ). O

Discussion. Other solutions can be used to compute the number of support-
ers. One is adopting streaming techniques to compute frequency moments. After
the seminal paper by Flajolet and Martin [1985], extensions and refinements
have been proposed, in particular the systematic effort of Alon et al. [1999].
Differently from these contributions, we do not need to store or compute the
values of hash functions or generate node labels following complicated dis-
tributions, for example, exponential ones, as in Flajolet and Martin [1985].
This also implies that the amount of information kept per node is extremely
small and only elementary operations (i.e., bitwise ORs) need to be performed.
The initialization step of every phase requires to generate random labels for
the nodes. Here, the built-in random number generator is perfectly suited to
the purpose, as experimental results also suggest. Furthermore, since every bit
is set to 1 with the same probability ¢ independently of other bit positions and
vertices, when ¢ is small this process, as discussed earlier in this section, can be

IA
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Fig. 12. Fraction of nodes with good estimations after a certain number of iterations. For instance,
when measuring at distance d = 4, 15 iterations suffice to have good estimators for 99% of the
pages (UK-2002 sample).

implemented efficiently using a geometric distribution. Other potentially inter-
esting approaches, such as Bloom filters [Broder and Mitzenmacher 2003], are
not trivial to implement in our setting. For instance, one might think of associ-
ating a Bloom filter to every page in the graph. For any maximum distance of
interest and for every page x, its associated Bloom filter would keep a summary
of the set of nodes within distance d from x. The problem here is that, in order
to keep a summary of n distinct elements while avoiding saturation, a Bloom
filter needs considerably more than Q(logn) bits. This can still bring to consid-
erable savings when each element in the set is itself a complex object (e.g., a
Web page), but this is far beyond the amount of bits per node we can afford.

The analysis of our algorithms turns out to be much more simple than the
ones presented in Flajolet and Martin [1985] and we hope it provides a more
intuitive explanation of why probabilistic counting works. The reason is that
the probabilistic analysis in Flajolet and Martin [1985] requires the average
position of the least significant bit that is not set to 1 to be computed in a
suitably generated random bit string. Computing this value is not straightfor-
ward. Conversely, in our case, every B.(x) is the sum of binary independent
random variables, so that we can easily compute its expectation and provide
tight bounds to the probability that it deviates from the expectation for more
than a given factor.

4.4 Experimental Results of the Bit Propagation Algorithms

We proceed backwards, starting with €;,,x = 1/2 and then dividing € by two at
each iteration. We freeze the estimation for a node when B.(x) < (1 — 1/e)k,
and stop the iterations when 1% or less nodes have B.(x) > (1 — 1/e)k.

Figure 12 shows that the number of iterations of the Adaptive Bit-
Propagation algorithm required for estimating the neighbors at distance 4 or
less is about 15, while for all distances up to 8 the number of iterations required
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Fig. 13. Comparison of the average relative error of the different strategies (UK-2002 sample).

is less than 25. The results in this figure are obtained in the UK-2002 collection
with 18.5 million nodes (see Section 5).

Besides the estimator described in the previous section, we considered the
following one: whenever B.(x) < (1 — 1/e)k for the first time, we estimate N (x)
twice using the estimator from Section 4.2 with B.(x) and Bg.(x) and then
averaging the resulting estimations. We call this the combined estimator that
uses both the information from ¢ as well as the number of bits set. In practice
the error of the combined estimator is lower.

We compared the precision obtained by this method with the precision given
by the ANF algorithm [Palmer et al. 2002]. In ANF, the size of the bitmask
depends on the size of the graph, while the number of iterations (£ in their
notation) is used to achieve the desired precision. Our approach is orthogonal:
the number of iterations depends on the graph size, while the size of the bitmask
is used to achieve the desired precision. In order to compare the two algorithms
fairly, we considered the product between the bitmask size and the number of
iterations as a parameter describing the overall number of bits per node used
(this is in particular the case if iterations are performed in parallel).

We fixed in ANF the size of the bitmask to 24, since 22* = 16 M is the closest
power of 2 for the 18.5 million nodes of UK-2002 (using more would be wasting
bits). Next we ran ANF for 24 iterations (equivalent to 576 bits x iterations)
and for 48 iterations (equivalent to 1152 bits x iterations). The former value
is slightly more than the requirements of our algorithm at distance 1, while
the latter is the same requirement as our algorithm at distance 5 (one plus
the maximum distance we use for spam detection in the experiments shown in
Section 5).

The comparison is shown in Figure 13. It turns out that the basic estimator
performs well over the entire distance range, but both ANF and the combined
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Table I. Characteristics of the Base Collections Used in Our Experiments

Collection Pages Links Links/page Hosts Pages/host
UK-2002 18.5 M 298 M 16.1 98,542 187.9
UK-2006 779M | 3,022M 38.8 11,403 6828.3

estimator technique perform better. In particular, our combined estimator per-
forms better than ANF for distances up to 5 (the ones we are interested in for
the application we consider), in the sense that it has better average relative
error and/or it has the same performance but it uses a smaller overall amount
of bits. For larger distances the probabilistic counting technique used in ANF
proves to be more efficient, since it has the same performance but it uses a
smaller overall amount of bits.

It is also important to point out that, in practice, the memory allocation is
in words of either 32 or 64 bits. This means that, even if we choose a bitmask
of 24 bits for the ANF probabilistic counting routine, as was the case in our
experiments, 32 bits are actually allocated to each node, 8 of which will not
be used by the algorithm. With our approach instead, these bits can be used to
increase precision. These considerations of efficiency are particularly important
with the large data sets we are considering.?

5. EXPERIMENTAL FRAMEWORK

In this section we consider several link-based metrics, whose computation uses
algorithms which are feasible for large-scale Web collections, and which we
have found useful for the purpose of Web spam classification. These are not all
possible statistics that can be computed; for a survey of Web metrics, see Costa
et al. [2005].

One of the key issues in spam detection is to provide direct techniques that
allow search engines to decide if a page can be trusted or not. We use these
metrics to build a set of classifiers that we use to test the fitness of each metric
to the purpose of automatic spam classification.

5.1 Data Sets

We use two large subsets of pages from the .uk domain, downloaded in 2002 and
2006 by the Dipartimento di Scienze dell’Informazione, Universita degli studi di
Milano. These collections are publicly available at http://law.dsi.unimi.it/
and http://wuw.yr-bcn.es/webspan/, and were obtained using a breadth-first
visit using the UbiCrawler [Boldi et al. 2004].

Table I summarizes the properties of these collections.

The UK-2006 collection is much deeper than the UK-2002 collection, but it
includes less hosts, as it was given a smaller set of seeds to start with. The
fact that the UK-2006 collection also has many more links per page agrees with
empirical observations that the Web is becoming denser in general [Leskovec
et al. 2005].

3Given the very large or huge sizes of Web collections nowadays, we should in principle allocate more
memory per node. In practice, the values we considered generally suffice, since we are interested
in the number of supporters within a given range, which is typically orders of magnitude less than
the overall number of pages in the collection.
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5.2 Data Labeling

Due to the large size of this collection, we decided to classify entire hosts in-
stead of individual pages. This increases the coverage of the sample, but it also
introduces errors, as there are some hosts that consist of a mixture of spam
pages and legitimate contents.

—TUK-2002: The manual classification was done by one of the authors of this
paper and took roughly three days of work. Whenever a link farm was found
inside a host, the entire host was marked as spam. The sampling for labeling
that dataset was initially done at random, but, as the ratio of spam pages to
normal pages was small, we did an ad-hoc sampling in which we tried to bias
the sample towards spam pages. We sampled the hosts having the highest
PageRank values in their home page, highest overall PageRank and highest
number of pages. Other hosts were added to the sample that was labeled by
taking all the hosts with the highest hostname length, as several spammers
tend to create long names such as “www.buy-a-used-car-today.example” (but
not all sites with long host names were spam). For the same reason, we
searched for typical spamming terms in the host names, and we added to the
sample that was labeled all the hosts with domain names including keywords
such as mp3, mortgage, sex, casino, buy, free, cheap, etc. (not all of them had
link farms) and typical nonspam domains such as . ac.uk, . gov.uk and others.
For the purposes of training and testing the classifiers, we took only the
“normal” and “spam” labels into consideration. This diverts from the use of
this collection in Becchetti et al. [2006a, 2006b] in which we considered an
extra label, “suspicious” as “normal”, but this is done for consistency with
the experiments in the other collection. In any case, “suspicious” labels are
only 3% of the cases.

—UK-2006: The manual classification was done by a group of over 20 volun-

teers who received a set of standard guidelines, as described in Castillo et al.
[2006a]. These guidelines cover most of the types of Web spam mentioned
in the literature, not purely link-based spam. The sampling was done uni-
formly at random over all the hosts in the collection, assigning two judges
to each host in most cases. A third judgment was used to break ties in the
case of contradictory evaluations (i.e., one normal and one spam label). The
collection also includes automatic “normal” labels based in several trusted
domains such as .ac.uk, .gov.uk, .police.uk, etc.
For the purposes of the classifier, we did a majority vote among normal and
spam judgments (ignoring borderline evaluations). We kept all hosts that
matched our domain-based patterns or in which there were at least 2 human
judges.

Table IT summarizes the number of labels on each collection.

6. FEATURES AND CLASSIfiERS

This section presents the experimental results obtained by creating automatic
classifiers with different sets of features (or attributes). At the end of this section
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Table II. Characteristics of the Labels Used on Each Collection

Classified % of Normal Spam
Collection Hosts Total (%) (%)
UK-2002 5,182 5.26% | 4,342 (84%) | 840 (16%)
UK-2006 5,622 49.3% 4,948 (88%) | 674 (12%)

we present the performance of a classifier that uses the entire set of link-based
features.

6.1 Automatic Classification

We automatically extracted a series of features from the data, including the
PageRank. The TruncatedPageRank at distance d = 1,2,3 and 4; and the
estimates of supporters at the same distances, using the adaptive technique
described in Section 4. These link-based metrics are defined for pages, so
we assigned them to hosts by measuring them at both the home page of the
host (the URL corresponding to the root directory) and the page with the max-
imum PageRank of the host. In our samples, the home page of the host is the
page with the highest PageRank in 38% of the cases (UK-2002) and 57% of the
cases (UK-2006). In the case of hosts marked as spam, the proportions are 77%
and 58% respectively.

The labelled hosts, grouped into the two manually assigned class labels:
“spam” and “normal,” are used for the training and testing sets for the learning
process. We experimented with the Weka [Witten and Frank 1999] implemen-
tation of C4.5 decision trees. Describing this classifiers here in detail is not
possible due to space limitations, for a description see Witten and Frank [1999].

For each set of features we built a classifier; we did not use pruning and
let Weka generate as many rules as possible as long as there are at least 2
hosts per leaf (this is the M parameter in the weka.classifiers.trees.J48
implementation).

We also used bagging [Breiman 1996], a technique that creates many clas-
sifiers (in our case, 10), and then uses majority voting for deciding the class to
which an element belongs. The classifiers that use bagging perform in general
better than the individual classifiers they are composed of.

The evaluation of the learning schemes was performed by a tenfold cross-
validation of the training data. The data is first divided into 10 approxi-
mately equal partitions, then each part is held out in turn and the learning
scheme is trained on the remaining 9 folds. The overall error estimate is the
average of the 10 error estimates. The error metrics we are using are the
precision and recall measures from information retrieval [Baeza-Yates and
Ribeiro-Neto 1999], which considering the spam detection task are defined
as:

# of h lassifi
Precigion — -°f Spam osts classified as spam

# of hosts classified as spam

# of spam hosts classified as spam
Recall =

# of spam hosts
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Notice that as not all the data is labeled, precision and recall are, respectively,
lower and upper bounds on the whole data set.
For combining precision (P) and recall (R), we used the F-Measure, which
corresponds to the harmonic mean of these two numbers,
2PR
“P+R
We also measured the two types of errors in spam classification:

# of normal hosts classified as spam

Fal iti te =
alse positive rate # of normal hosts

. # of spam hosts classified as normal
False negative rate = .
# of spam hosts
The false negative rate is one minus the recall of the spam detection task, and

the false positive rate is one minus the recall of the normal host detection task.

6.2 Classification Caveats

There are many Web sites whose design is optimized for search engines, but
which also provide useful content. There is no clear line to divide a spam site
from a heavily optimized Web site, designed by a person who knows something
about how search engines work.

In the case of UK-2002, we examined the current contents of the pages and not
the contents of them in 2002 (as those were not available). This can negatively
affect the results in the UK-2002 collection and introduce extra noise. Also, in
the UK-2002 the classification was based solely on link-based spam, not other
forms of spam.

In the case of UK-2006, the evaluation was done less than 2 months after the
crawling, and the judges had access to the home page of the site at crawling
time, pulled automatically from the crawler’s cache. The evaluation guidelines
covered most types of spam including both keyword-based and link-based spam.

6.3 Degree-Based Measures

The distribution of in-degree and out-degree can be obtained very easily by
reading the Web graph only once. In Figure 14 we depict the histogram of the
log of in-degree and log of out-degree over the normal pages and the spam pages.
The histogram is shown with bars for the normal pages and with lines for the
spam pages. Both histograms are normalized independently, and the y-axis
represents frequencies.

In the case of spam hosts in the UK-2002 collection, there is a large group
of about 40% of them that have an in-degree in a very narrow interval. In the
UK-2006 the in-degree seems to be higher on average for spam pages, but there
is no dramatic “peak” as in UK-2002.

Another degree-based metric is the edge-reciprocity. This measures how
many of the links in the directed Web graph are reciprocal. The edge-reciprocity
can be computed easily by simultaneously scanning the graph and its trans-
posed version, and measuring the overlap between the out-neighbors of a page
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Fig. 14. Histogram of the log(indegree) of home pages.

and its in-neighbors. Figure 15 depicts the edge reciprocity in both collections.
This metric appears to be take extreme values (0 and 1) with high frequency;
this is because the degree of the pages follows a power law, and there are many
pages with degree 1.

The degree of the nodes induces a natural “hierarchy” that can be used to
define different classes of nodes. A network in which most nodes are connected
to other nodes in the same class (for instance, most of the connections of highly-
linked are to other highly-linked nodes) is called assortative and a network in
which the contrary occurs is called disassortative. This distinction is important
from the point of view of epidemics [Gupta et al. 1989].

We measured for every host in our sample the ratio between its degree and
the average degree of its neighbors (considering both in- and out-links). In
Figure 16 we can see that in both collections there is a mixing of assortative
and disassortative behavior. The home pages of the spam hosts tend to be linked
to/by pages with relatively lower in-degree. This is clearer in the UK-2002 sample
where there is a peak at 10, meaning that for that group, their degree is 10 times
larger than the degree of their direct neighbors.

We used the following attributes in the home page and the page with max-
imum PageRank, plus a binary variable indicating if they are the same page
(8 x 2+ 1 = 17 features in total):

(1) Log of the indegree

(2) Log of the outdegree

(3) Reciprocity

(4) Log of the assortativity coefficient
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Fig. 15. Histogram of the edge-reciprocity of home pages.

Table ITI. Performance Using Only Degree-Based Attributes

Dataset True Positives False Positives F-Measure
UK-2002 0.732 0.015 0.808
UK-2006 0.323 0.024 0.432

(5) Log of the average in-degree of out-neighbors
(6) Log of the average out-degree of in-neighbors
(7) Log of the sum of the in-degree of out-neighbors
(8) Log of the sum of the out-degree of in-neighbors.

In Table IIT we report on the performance of a C4.5 decision tree with bag-
ging, using only degree-based features. The performance is acceptable in the
UK-2002 dataset but very poor in the UK-2006 dataset. This means that in the
UK-2002 dataset there are many spam hosts that have anomalous local con-
nectivity, while these hosts are fewer in the UK-2006 data. This may indicate
that spammers are getting more sophisticated with time as search engines also
improve their spam detection techniques.

6.4 PageRank

We calculated the PageRank scores for the pages in the collection using o = 0.85
and the formula at the beginning of Section 3. We plot the distribution of the
PageRank values of the home pages in Figure 17. We can see a large fraction
of pages sharing the same PageRank. This is more or less expected, as there is
also a large fraction of pages sharing the same in-degree (although these are
not equivalent metrics).
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Following an idea by Benczur et al. [2005], we studied the PageRank dis-
tribution of the pages that contribute to the PageRank of a given page. In
Benczur et al. [2005], this distribution is studied over a sample of the pages
that point recursively to the target page, with a strong preference for shorter

paths.
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Fig. 18. Histogram of the standard deviation of the PageRank of neighbors.

Table IV. Performance Using Only Degree-Based and Pagerank-Based Attributes

Previous F-Measure
Dataset True Positives | False Positives | F-Measure from Table III
UK-2002 0.768 0.014 0.835 0.808
UK-2006 0.359 0.025 0.466 0.432

We calculate the standard deviation of the PageRank values of the in-
neighbors of pages. The result is shown in Figure 18, and it seems that for
a large group of spammers in our datasets it is more frequent to have less dis-
persion in the values of the PageRank of the in-neighbors than in the case of
nonspam hosts.

We used the degree-based attributes from the previous section plus the fol-
lowing, measured in the home page and the page with maximum PageRank,
plus the PageRank of the home page divided by the PageRank of the page with
the maximum PageRank. This makes a total of 28 features (17+5x2+1 = 28):

(1) Log of PageRank

(2) Log of (in-degree divided by PageRank)

(3) Log of (out-degree divided by PageRank)

(4) Standard deviation of PageRank of in-neighbors

(5) Log of (standard deviation of PageRank of in-neighbors divided by Page-
Rank)

The performance of an automatic classifier using degree- and PageRank-
based attributes is reported in Table IV. In both collections the performance
improves by adding these features.
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Fig. 19. Histogram of TrustRank scores (absolute).

6.5 TrustRank

In Gyongyi et al. [2004] the TrustRank algorithm for trust propagation is
described: it starts with a seed set of hand-picked #rusted nodes and then
propagates their scores by simulating a random walk with restart to the trusted
nodes. The intuition behind TrustRank is that a page with high PageRank, but
lacking a relationship with any of the trusted pages, is suspicious.

The spam mass [Gyongyi et al. 2006] of a page is defined as the amount of
PageRank received by that page from spammers. This quantity cannot be calcu-
lated in practice, but it can be estimated by measuring the estimated nonspam
mass, which is the amount of score that a page receives from trusted pages.
For the purpose of this paper we refer to this quantity simply as the TrustRank
score of a page.

For calculating this score, a biased random walk is carried out on the Web
graph. With probability @ we follow an out-link from a page, and with prob-
ability 1 — « we go back to one of the trusted nodes picked at random. For
the trusted nodes we used data from the Open Directory Project (available at
http://rdf .dmoz.org/), selecting all the listed hosts belonging to the .uk do-
main. This includes over 150,000 different hosts, from which we removed the
hosts that we know were spam (21 hosts in UK-2002 and 29 hosts in UK-2006).

For the UK-2002 sample 32,866 ODP hosts were included in our collection,
this is 33% of the known hosts in our collection. We used the same propor-
tion (33% of known hosts) for UK-2006, sampling 3,800 ODP hosts in this
case.

As shown in Figure 19, the score obtained by the home page of hosts in
the normal class and hosts in the spam class is very different. Also, the ratio
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Fig. 20. Histogram of TrustRank scores (relative to PageRank).

Table V. Performance Using Attributes Based on Degree, PageRank, and TrustRank

Previous F-Measure
Dataset True Positives False Positives F-Measure from Table IV
UK-2002 0.786 0.014 0.846 0.835
UK-2006 0.539 0.037 0.595 0.466

between the TrustRank score and the PageRank (the estimated relative non-
spam mass, shown in Figure 20) is also very effective for separating spam from
normal pages.

We build a classifier using the attributes from the previous section, plus
the following attributes measured in the home page and the page with the
maximum PageRank, plus the TrustRank of the home page divided by the
TrustRank of the page with the maximum PageRank (28 + 3 x 2+ 1 = 35
attributes):

(1) Log of TrustRank (log of absolute nonspam mass)
(2) Log of (TrustRank divided by PageRank) (log of relative nonspam mass)
(38) Log of (TrustRank divided by in-degree).

The performance of an automatic classifier using metrics based on degree,

PageRank, and TrustRank is shown in Table V. The performance improvement
is noticeable in the UK-2006 collection.

6.6 Truncated PageRank

We computed Truncated PageRank for both collections. In practice, we observe
that for the spam hosts in the UK-2002 collection, the Truncated PageRank is
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Fig. 21. Histogram of maximum change in Truncated PageRank up to four levels.

Table VI. Performance Using Attributes Based on Degree, PageRank, and Truncated

PageRank
Previous F-Measure
Dataset True Positives | False Positives | F-Measure from Table IV
UK-2002 0.783 0.015 0.843 0.835
UK-2006 0.355 0.020 0.473 0.466

smaller than the PageRank. If we observe the ratio of Truncated PageRank
at distance i versus Truncated PageRank at distance i — 1, as shown in
Figure 21, we can see a difference between the spam and nonspam classes,
but this difference is not present in the UK-2006 collection.

We built a classifier using the degree- and PageRank-based attributes, plus
the following in the home page and the page with the maximum PageRank:

(1) Log of Truncated PageRank at distance 1, 2, 3, and 4 (4 features)

(2) Log of: Truncated PageRank at distance T divided by Truncated PageRank
at distance T' — 1, for T' = 2, 3, 4 (3 features)

(3) Log of: Truncated PageRank at distance T divided by PageRank, for 7' =
1,2, 3,4 (4 features)

(4) Log of the minimum, average, and maximum change of: Truncated
PageRank T divided by Truncated PageRank 7' — 1, for T' = 1, 2, 3, 4, con-
sidering that Truncated PageRank at distance 0 is equal to PageRank (3
features)

Additionally, we used the Truncated PageRank at distance 7' at the home
page divided by Truncated PageRank at distance 7' in the page with maximum
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Fig. 22. Histogram of minimum change of site neighbors.

PageRank, for T' = 1, 2, 3, 4. The total number of features of this classifier is
28+ (4+3+4+3)x2+4=60.

The performance obtained with this classifier is shown in Table VI. Its im-
provement over the classifier based in degree- and PageRank-based metrics, is
lower than the one obtained by using TrustRank.

6.7 Estimation of Supporters

In this section we use the technique for estimating supporters presented in
Section 4. This algorithm can be very easily expanded upon to consider the
number of different hosts contributing to the ranking of a given host. To do so, in
the initialization the bit masks of all the pages in the same host are made equal.

We found that the estimation of supporters hosts is very valuable for separat-
ing spam from nonspam, in particular when the rate of change of the number
of supporters is studied. Figure 22 shows the minimum, and Figure 23 the
maximum of this quantity for the counting of different hosts.

We built a classifier using the degree- and PageRank-based attributes, plus
the following attributes in the home page and the page with the maximum
PageRank:

(1) Log of the number of supporters (different hosts) at distanced =1, 2, 3,4
(4 features)

(2) Log of: the number of supporters (different hosts) at distanced =1, 2, 3,4
divided by PageRank (4 features)

(3) Log of: the number of supporters (different hosts) at distance d = 2, 3,4
divided by number of supporters (different hosts) at distance d — 1 (3
features)
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Fig. 23. Histogram of maximum change of site neighbors.

(4) Log of the minimum, maximum, and average of: the number of supporters
(different hosts) at distance d = 2, 3, 4 divided by number of supporters
(different hosts) at distance d — 1 (3 features)

(5) Log of: the number of supporters (different hosts) at distance exactly d =
2, 3, 4 (that is, the number of supporters at distance d minus the number
of supporters at distance d — 1) divided by PageRank (3 features)

(6) Log of the number of supporters at distance d = 2, 3, 4; note that support-
ers at distance 1 is in-degree (3 features)

(7) Log of: the number of supporters at distance d = 2, 3, 4 divided by Page-
Rank (3 features)

(8) Log of: the number of supporters at distance d = 2, 3, 4 divided by number
of supporters at distance d — 1 (3 features)

(9) Log of the minimum, maximum, and average of: the number of supporters
at distance d = 2, 3, 4 divided by number of supporters at distance d — 1
(3 features)

(10) Log of: the number of supporters at distance exactly d = 2, 3, 4, divided
by PageRank (3 features).

Additionally, we included the ratio of the number of supporters (different
hosts) in the home page and the page with the maximum PageRank at distance
d = 1,2,3,4, plus the same ratio for the number of supporters at distance
d =2,3,4. The total is 28 + 32 x 2 + 4 + 3 = 99 features.

The performance of the classifier that uses these attributes is shown in
Table VII.
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Table VII. Performance Using Attributes Based on Degree, PageRank, and Estimation of
Supporters
Previous F-Measure
Dataset True Positives | False Positives | F-Measure from Table IV
UK-2002 0.802 0.009 0.867 0.835
Only pages 0.796 0.013 0.854
Only hosts 0.779 0.010 0.850
UK-2006 0.466 0.032 0.548 0.466
Only pages 0.401 0.029 0.496
Only hosts 0.467 0.029 0.556

Table VIII. Summary of the Performance of the Different Classifiers Studied on this Article

UK-2002 UK-2006
True False True False
§ Metrics Positives | Positives Fy Positives | Positives Fyq

6.3 | Degree (D) 0.732 0.015 0.808 0.323 0.024 0.432
6.4 | D+PageRank (P) 0.768 0.014 0.835 0.359 0.025 0.466
6.5 | D+P+TrustRank 0.786 0.014 0.846 0.539 0.037 0.595
6.6 | D+P+Trunc. PR 0.783 0.015 0.843 0.355 0.020 0.473
6.7 | D+P+Est. Supporters 0.802 0.009 0.867 0.466 0.032 0.548
6.8 | All attributes 0.805 0.009 0.871 0.585 0.037 0.631

In the table, we have also included the performance of the classifier by re-
ducing the number of attributes to count only different hosts or only different
pages. In the UK-2002 collection it is better to count supporters directly, while
in the UK-2006 collection it is better to use host-based counts instead.

6.8 Combined Classifier

By combining all of the attributes we have discussed so far (163 attributes in
total), we obtained a better performance than we did for each of the individual
classifiers (the F-measures were 0.870 for UK-2002 and 0.630 for UK-2006).
Table VIII presents the results of the combined classifier along with the results
obtained with the previous classifiers.

The classifier described on Section 6.4, that uses only degree-based and
PageRank-based attributes, can be considered as a baseline. In this case, the
best improvements in the UK-2002 collection are obtained using the estimation
of supporters, followed by TrustRank, followed by Truncated PageRank; in the
UK-2006 collection, the best is TrustRank, followed by estimation of supporters,
followed by Truncated PageRank.

7. RELATED WORK

Characterizing and detecting spam. In Fetterly et al. [2004] it is shown that
most outliers in the histograms of certain properties of Web pages (such as
in-degree and out-degree) are groups of spam pages. In Gomes et al. [2005] a
comparison of link-based statistical properties of spam and legitimate e-mail
messages is presented.

The method of “shingles” for detecting dense subgraphs [Gibson et al. 2005]
can be applied for link farm detection, as members of a link farm might share
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a substantial fraction of their out-links (however, the algorithm will perform
worse if the link farm is randomized).

In Zhang et al. [2004] it is shown that spam pages should be very sensitive
to changes in the damping factor of the PageRank calculation; with the case of
Truncated PageRank we not only modify the damping factor, but also the whole
damping function.

Nepotistic links, that is, links that are present for reasons different than
merit, can be detected and removed from Web graphs before applying link-
based ranking techniques. This is the approach proposed in Davison [2000a]
and extended in da Costa-Carvalho et al. [2006]. Another idea is to use “bursts”
of linking activity as a suspicious signal [Shen et al. 2006].

In Benczur et al. [2005] a different approach for detecting link spam is pro-
posed. They start from a suspicious page, follow links backwards to find pages
which are strong contributors of PageRank for the target node, and then mea-
sure if the distribution of their PageRank is a power-law or they are mostly
pages in a narrow PageRank interval. Note that this can only be done for some
pages at the same time, while all the algorithms we apply can be executed for
all nodes in the graph at the same time.

Also, content-based analysis [Ntoulas et al. 2006; Drost and Scheffer 2005;
Davison 2000a] has been used for detecting spam pages, by studying relevant
features such as page size or distribution of keywords, over a manually tagged
set of pages. The performance of content-based classification is comparable to
our approach.

A content-based classifier described in Ntoulas et al. [2006], without bagging
nor boosting, reported 82% of recall, with 2.5% of false positives (84.4% and 1.3%
with bagging, 86.2% and 1.3% with boosting). Unfortunately, their classifier is
not publicly available for evaluation on the same collection as ours. Also, note
that link-based and content-based approaches to spam detection are orthogonal
and suitable for detection of different kinds of spam activity. It is likely that Web
spam classifiers will be kept as business secrets by most researchers related to
search engines, and this implies that for evaluation it is necessary to have a
common reference collection for the task of Web spam detection in general, as
proposed in Castillo et al. [2006b].

Outside the topic of Web spam, links have been used for classification tasks.
For instance, Lu and Getoor [2003] use the categories of the objects linked from
a target page to infer the category of such page.

Propagating trust and spamicity. It is important to notice that we do not need
to detect all spam pages, as the “spamicity” can be propagated. A technique
shown in Wu and Davison [2005] is based on finding a page which is part of
a link farm and then marking all pages that have links towards it, possibly
recursively following back-links up to a certain threshold (this is a variation of
what is called “BadRank”).

In Benczur et al. [2005], “spamicity” is propagated by running a personalized
PageRank in which the personalization vector demotes pages that are found to
be spam.

Probabilistic counting. Morris’s algorithm [Morris 1978] was the first ran-
domized algorithm for counting up to a large number with a few bits. A more
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sophisticated technique for probabilistic counting is presented in [Flajolet and
Martin 1985]; this technique is applied to the particular case of counting the
number of in-neighbors or “supporters” of a page in Palmer et al. [2002]. The
use of probabilistic counting is important in this case, as the cost of calculating
the exact values is prohibitive [Lipton and Naughton 1989].

8. CONCLUSIONS AND FUTURE WORK

On document classification tasks, the most direct approach is to build auto-
matic classification systems based on the contents and/or formatting of the
documents. With regard to the particular task of Web spam classification, we
can take a different approach and build automatic classification systems based
on their link structure. This is what makes the approach to Web spam we have
described in this article unique. Also, we have been careful to restrict ourselves
to attributes that can be obtained from a Web graph using semi-streaming
algorithms, so they can be applied to Web graphs of any size.

The performance of our detection algorithms is higher in the UK-2002 collec-
tion than in the UK-2006 collection. The latter was labeled with a broader defi-
nition of spam that includes also content-based spam in addition to link-based
spam. However, we are not suggesting to use only link-based attributes. The
link-analysis methods are orthogonal to content-based analysis, and the per-
formance of a classifier using content- and link-based features is substantially
better than the performance of a classifier using only one set of features [Castillo
et al. 2007].

As a general criticism of our work, our host-based approach has some draw-
backs that should be addressed in future work. For instance, hosts can have
mixed spam/legitimate content, and it is important to study how frequently this
occurs, as well as testing how link-based attributes can help in the classification
task at a page level. Also, a better definition of Web site instead of host would
be useful; for instance, considering multisite hosts such as geocities.com as
separate entities.

Finally, the use of regularization methods that exploit the topology of the
graph and the locality hypothesis [Davison 2000b] is promising, as it has been
shown that those methods are useful for general Web classification tasks [Zhang
et al. 2006; Angelova and Weikum 2006; Qi and Davison 2006] and that can
be used to improve the accuracy of Web spam detection systems [Castillo et al.
2007].

APPENDIXES
A. PROOF OF THEOREM 1

In the proof of the theorem we will repeatedly use the following facts:

Facr 1. Forevery B > 0, the function

Fls) = (1 _ é)

is monotonically increasing in the interval [1/8, co).
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Proor. The function (and its derivative) is 0 in s = 1/8. Also, the function
and its derivative are positive in (1/8, c0). O

Facr 2. Foreveryn > 1:

1- - 1-
< n—i—l) <e<< n—i—l)

Proor. This is an easy consequence of the well known fact that

1 n 1 n+1
(1+—> <e<<1+—) . O
n n
In what follows, we denote by F_(x) the first value of ¢ such that B.(x) <

(1—1/e)k,i.e., Bx) > (1—1/e)k for e = 2F (x),4F _(x), ... , €max-

THEOREM 1.

P[(N(x) > 3N(x))U (N(x) < @)] < log, N (x)e 0027k | =0.012k

for every page x such that N(x) > 10.

Proor. We first consider P[N(x) < (1/3)N(x))]. Note that N(x) = 1/F_(x)
by definition of F_(x). Also, N(x) < (1/3)N(x) implies F_(x) > 3/N(x) > 3e(x)
and thisis equivalent to F_(x) > 4¢(x), by definition of e(x) and by the algorithm.
Hence,

PIN() < (1/3N@)] < PIF.(x) = 4e(x)] = Y PIF_(x) = 2'e(x)],
i=2
where inax = logy(emax/€(x)) < logy N(x), since e(x) > 2/N(x) by definition. We
continue with:

Imax

Y PIF_(x) = 2e(x)]
=2

Imax

imax 1
= ZP|:BQi€(x)(.’)C) < (1 — 1) k ﬂ Bgle(x)(x) > (1 — —) k]
< e . e
=2 [=i+1
imax 1
P| Bsi.( 1—— k|
= F[pec < (1-0)1]
Furthermore we have:
1 1

2i—1
E[B.2i ()] =k — k(1 — e(x)2)N™ > <1 - (—) )k > (1 _ g> k,

e

where the first equality follows from Lemma 1, while the second inequality
follows recalling that ¢(x) > 1/2N(x) and applying Fact 2 with some straight-
forward manipulations. As a consequence, if we set

CE[Bp@] - (1-1)k 1o @
b E[Bg(x)gi(x)] C1- (1 — e(x)2)N@ ’
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we have 0 < §; < 1 and the event (B (x) < (1 — 1/e)k) implies (B, (x) <
(1- (Si)E[Be(x)zi (x)]), where B, ()i (x) is the sum of independent, binary random
variables. Hence, we can apply Chernoff’s bound [Mitzenmacher and Upfal
2005] to obtain:

512E{Bs(x)2i (x)] — M
P[Be(x>2i(x) < (1 — 1/e)k] <e 2z =e 1-(1—e(x)2)) N @)
1. (1 2i_1)2 11\
<e 2 <e 2

The third inequality follows recalling that ¢(x) < 1/2N (x) and applying Fact 2,
while the fourth follows since i > 2. As a consequence:

imax Imax ( % - % )
Lk

P[N(x) < (1/3N&)] < Y PIF.(x)=2€x)] <) e >
=2 =2

~ 'S e 0927k _ (1og, N)e 0027k
i=2
We now turn to P[N(x) > 3N (x)]. First note that (N(x) > 3N (x)) is equiva-
lent to (F_(x) < 1/3N(x)), by the way N (x) is chosen and by the definition of
F_(x).
In the analysis, we have to distinguish the cases e(x) < 2/3N(x) and €(x) >
2/3N(x). In the former case we write:

N 1 2¢e(x)
P[N(x)> 3N(x)] = P|:F<(x) < m} = P|:F<(x) < 3 ]
Imax 1
= PIF_(x) = ex)/2] = P|;Q) Bz (x) > <1 - E) ki|

IA

P|:Be(x)(x) > (1 — %) ki|,

where the first equality follows from the definitions of N(x) and F_(x), the
second inequality follows since 1/N(x) < 2¢(x) by definition of ¢(x), while the
third equality is a consequence of the fact that, by the algorithm, the largest
possible value for F_(x) that is smaller than 2¢(x)/3 is €(x)/2. Now, we have

N 2\
E[Beo@)] =k — k(1 — )™ <k —k (1 B 3N(x)>

1 N(x) 1
k‘k(l‘m> < (17)’“

where the first equality follows from Lemma 1, the second inequality follows
since €(x) < 2/3N (x), while the fourth follows from Fact 2. Now set

s (1 - %) k —E[Bcx(®)] (1 — e(x)N® — 1
- E[B.(x)(x)] T 11— e@)N®’
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where obviously § < 1. We can write:

P[N(x) > 3N(.’XI)] < PI:BE(x)(x) > (1 — %) k:|

2

= P[Be(x)(x) > (1+ 5)E[B€(x)(x)]] <e 3 B (x)(x)

2

(a-e)N@ -1

— o 30-(--cx)N@)"
= e 30-U-aN®) "

where the third inequality follows from the application of Chernoff bound. On
the other hand, recalling that ¢(x) < 2/3N (x) we get:

k> ) k> 0.012F,
31 -1 —e@)VE) =7 31— (1 — g2V~

whenever N(x) > 10. In deriving the second inequality, we use use Fact 1
with B = 3/2 to conclude that (1 — 2/3N (x))N® achieves its minimum when
N(x) = 10.

We now consider the case €(x) > 2/3N (x). Proceeding the same way as before
we get:

P(N(x) > 3N)| = PIF.(x) < e(x)/4] = p[ () Bewn ) > (1 - %) k:|

i=—1

< P[Bs(x)/z(x) > <1 — %) k]

where iy,,x has been defined previously. Here, the first equality follows since
(N(x) > 3N(x)) is equivalent to (F_(x) < 1/3N(x)) and the latter implies
(F_(x) < €(x)/2) since we are assuming €(x) > 2/3N(x). Proceeding as in the
previous case, it is easy to prove that P[B.(),2(x)] < (1 — 1/e)k. We can then
define:

(1= 1)k E[Bawp@®)] (1 eV 1

5= _
E[B.(x)2(%)] 1—(1—elx)/2N=’

where obviously § < 1. Finally,
1
P|:Be(x)/2(x) > <1 — —) k]
e

where the third inequality follows by considering the expression of
82P[Bc(x)/2(x)], recalling that e(x) < 1/N (x) by definition and applying Fact 1 to
(1 —1/2N(x))N® with the assumption that N(x) > 10. We therefore conclude:

P[W(x) > 3N (N(x) > @)} <logy N(x)e %™ 47001

IA

P[Bg(x)/g(x) >(1+ 8)E[Be(x)/2(x)]]

2
< o~ FBawp®) _ ,—0.043k

b
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