
Noname manuscript No.
(will be inserted by the editor)

Recommending Items in Pervasive Scenarios: Models and
Experimental Analysis

Luca Becchetti · Ugo Colesanti · Alberto

Marchetti-Spaccamela · Andrea Vitaletti

Received: date / Accepted: date

Abstract In this paper, we propose and investigate the effectiveness of fully decen-

tralized, collaborative filtering techniques. These are particularly interesting for use

in pervasive systems of small devices with limited communication and computational

capabilities. In particular, we assume that items are tagged with smart tags (such as

passive RFIDs), storing aggregate information about the visiting patterns of users that

interacted with them in the past. Users access and modify information stored in smart

tags transparently, by smart reader devices that are already available on commercial

mobile phones. Smart readers use private information about previous behavior of the

user and aggregate information retrieved from smart tags to recommend new items that

are more likely to meet user expectations. Note that we do not assume any transmis-

sion capabilities between smart tags: Information exchange among them is mediated

by users’ collective and unpredictable navigation patterns.

Our algorithms do not require any explicit interaction among users and can be easily

and efficiently implemented. We analyze their theoretical behavior and assess their

performance in practice, by simulation on both synthetic and real, publicly available

datasets. We also compare the performance of our fully decentralized solutions with

that of state-of-the-art centralized strategies.

Keywords Decentralized recommendations; Collaborative filtering; Resource

constrained devices

1 Introduction

Nowadays, the pervasive deployment of tiny devices with minimum storage and limited

or no computational capabilities appears a realistic perspective; one major obstacle are

L. Becchetti · U. Colesanti · A. Marchetti-Spaccamela · A. Vitaletti
Dipartimento di Informatica e Sistemistica “A. Ruberti”
SAPIENZA Universitá di Roma
via Ariosto 25
00185 Roma, Italy.
Tel.: +39-06-77274025
Fax: +39-06-77274002
E-mail: {becchett,colesanti.alberto,vitale}@dis.uniroma1.it

2

the strict energy constraints of battery powered devices. We refer to a class of passive

devices (i.e. not powered by batteries) that has emerged in the last decade, the most

prominent examples being RFID and NFC tags. An RFID tag is an object that can be

applied to or incorporated into a product, animal, or person for the purpose of identifi-

cation and tracking using radio waves. Passive RFID tags have no internal power supply

and draw power from the radio waves emitted by the reader. Near Field Communica-

tion or NFC, is a short-range high frequency wireless communication technology which

enables the exchange of data between devices within short distance aimed at usage in

mobile phones. The limited costs and the pervasiveness of these devices are paving the

way for new pervasive solutions: mobile ticketing in public transport, mobile payment,

smart shopping, social applications.

In this paper we consider fully decentralized collaborative filtering strategies for

item recommendation in pervasive systems. For example, the NFC consortium pro-

poses smart posters for shopping by tagging items of interest posted in billboards, or

any other form of advertising, with a passive tag, from which a user can exchange

data by touching it with her NFC-enabled handset; namely, the user can buy the item

associated with the tag and receive information on the item or even recommendations

on other items of potential interest on the basis of the succinct information obtained

interacting with smart posters. The distinguishing features of the above technologies

entail a model of decentralized computation in which low capability devices observe

a local stream of events and have to maintain summary information about overall

system behavior, while obeying stringent memory, computational and communication

constraints. In this scenario, distributed, local algorithms appear a natural choice to ad-

dress computational, communication and storage restrictions of the scenarios outlined

above.

The importance of recommender systems has been widely recognized in e-commerce

systems as a tool to suggest products to customers, providing relevant information in

shopping (e.g. Amazon, eBay). In order to recommend new items three main approaches

have been proposed: collaborative filtering, content-based filtering and hybrid methods

[12]. We consider Collaborative Filtering (CF for brevity) that classifies users and

products in terms of their past interactions.

We assume that items of interest are advertised by smart tags (e.g., RFIDs or

NFCs) distributed in an area, e.g., a city. In the sequel we will use the terms smart

tag and item interchangeably and the the term smart reader to denote a smart tag

enabled reader device (e.g. an NFC enabled smart phone). Each user is characterized

by a (unknown) ranking of items, describing her preferences; a smart reader stores

her history (e.g., the set of items previously visited by the user) during the visit and

has some computational capability. When a user interacts with item i the user’s smart

reader reads details on the item. We also assume that i stores a suitable summary of the

histories of users that visited i in the past: smart readers interact with smart tags, by

transparently (to the user) reading and updating the information stored by the latter.

We stress that we do not assume any transmission capabilities between smart tags,

which are assumed to be passive devices. When item i is visited by user j, her smart

reader can recommend a new item (or a set of items) of potential interest to j, using

current summary at i and j’s history. The recommendation of an item is good if the

proposed item is likely to meet j’s preferences. The above scenario is technologically

realistic and it is closely related to architectures proposed for smart shopping carts

[23] and smart shelves [15]. We remark that it also complies with privacy issues, since

3

Fig. 1 Exemplifying scenario: a smart library

Scenario: every item has an
associated smart tag with a
unique integer ID. The user
is visiting item 6 after vis-
iting items 2 and 4. The
smart reader uses aggregate
statistics concerning item 6
and user’s history to assign
scores to items other than 6
and to provide a recommen-
dation (e.g., item 1 has score
3, while item 3 has score 21
and is thus the top item in
the summary).

only aggregated information is disclosed from which it is not possible to infer private

information concerning specific users.

Results of the paper

Our main result is to show that, even under the stringent constraints outlined above,

simple heuristics allow to effectively profile users and provide good recommendations

in the scenario described above. The recommendation algorithm we consider is simple:

upon visiting item i, user j is recommended one item (or a subset of items) scoring

highest among those not yet visited by j. The core of the whole problem is defining

scores that i) can be efficiently estimated and updated locally by the smart reader upon

visiting new items and ii) that effectively reflect the users’ unknown preferences. Note

that scores and rankings can statistically depend on users’ visit patterns in complex

ways. We tackle this issue by defining suitable models of user behavior.

On the theoretical side, we provide asymptotically tight lower and upper bounds on

the number of examples required by the recommendation algorithm to compute good

estimations of item scores and thus provide good recommendations. While theoretical

analysis gives bounds that might be unfeasible in practical applications, our experi-

ments compare the performance of our algorithms with that of a centralized, state-of-art

recommendation algorithm that knows the overall system history. The tests are based

on both synthetic data and real data sets provided by Netflix, a popular on-line DVD

rental service; they show that the performance of our algorithm is very close to that

of the centralized one, in terms of standard metrics normally adopted to assess the

performance of Collaborative Filtering algorithms.

We observe that our algorithms can be considered as an application of stigmergy to

recommendation algorithms. Stigmergy is a form of self-organization where traces left

in the environment by the action of agents trigger the execution of subsequent actions,

by the same or a different agent, thus allowing spontaneous and indirect coordination

between agents [8]. Stigmergy has been exploited in tracking objects tagged by RFIDs

[26] and routing messages in mobile wireless ad-hoc networks [32]; however, to the

best of our knowledge, this is the first paper presenting a recommendation system for

pervasive systems based on this interaction paradigm.

4

Related work.

In the last years recommendation systems have been recognized as an important re-

search area and much work has been done both in industry and academia on devel-

opping new approaches. As a result, a number of recommender applications are used

in a variety of e-commerce systems, e.g., for recommending books by Amazon [25,

1], movies by MovieLens [28], DVDs by Netflix [2]. A survey of the main approaches

to recommendation applications can be found in [4]. On the other hand, future mass

deployment of pervasive networks opens the possibility of new scenarios for recommen-

dation systems. For example, we refer to MyGROCER [23], a recent proposal for a

ubiquitous computing environment for supermarkets based on a smart shopping cart

that exploits shopper’s identity to provide a personalized service. As observed in [34],

improvements are necessary to extend recommendation systems to new scenarios, “in-

cluding [...] products to purchase in a store made by a smart shopping cart”.

Collaborative Filtering allows to extract useful information without requiring co-

operation and identification of users and, for this reason, has emerged as the most

effective approach to tackle the privacy issues and for mass deployment. We briefly

review the main related results, referring to [4,9,20] for a thorough survey of litera-

ture on Collaborative Filtering. One of the main approaches to Collaborative Filtering,

adopted in [9,16], relies on the computation of similarity indices among items and on

using them for prediction of user likely preferences. Namely, an n×m item-user matrix

R stores binary information on users’ choices: R(i, j) is 1 if the j-th customer has pur-

chased item i and zero otherwise. Using matrix R, items are classified and the user is

suggested a set of items similar to items in U where, intuitively, two items are similar

when most users that find one interesting tend to find the other relevant as well.

In many cases users can clustered in groups: two users in the same group have

similar preferences. Singular Value Decomposition (SVD) [27] was shown to be useful

to cluster users; we remark that SVD is computationally intensive and requires cen-

tralized information and often requires additional conditions for its applicability that

are not met in practical cases. In [7,17] the goal is to approximately recover the latent

structure of users’ preferences. However, proposed solutions require extensive data on

each user and a centralized, expensive computation. Kumar et al. [22,24] study the

off-line problem where preferences are identified with past choices; items are clustered

and each user has a probability distribution over clusters: a user first chooses a cluster

by her distribution and then chooses a product uniformly at random from that clus-

ter. The goal is to recommend an item from the user’s preferred cluster. A different

approach is based on the use of ranking-based evaluation measures for the evaluation

of regression models [31]; this is motivated by the fact that ranking can be the main

underlying goal.

The contributions above consider centralized settings. Distributed recommendation

strategies have also been considered in the recent past. In [11] the authors propose to

partition item-user matrix R into smaller matrices: each new smaller matrix contains

the ratings of all the users on the items belonging to a certain topic or domain, e.g.,

the movies having a particular genre. However, they assume that these systems can

communicate with each other using a simple request/response protocol. In [14], the

authors explicitly consider the limitation imposed on CF by mobile devices, and in-

crementally update R by connecting near-by devices over Bluetooth without the need

for constant connection to a central server. In [6], a distributed solution is proposed to

on-line recommendation in which a user is in search of an item she likes; the algorithm

is randomized: at each step, the user either selects an item uniformly at random or asks

5

another user about her preferences. Although the above solution are distributed, we re-

mark that active cooperation between users is required. A similar remark applies to [5]

where the goal of the users is to learn their complete preference vector (approximately)

while minimizing the cost of probing.

Distributed CF has also been considered for P2P networks. We briefly discuss two

representative approaches; [36] considers recommendation in P2P file sharing systems

suing a Distributed Hash Table to allocate the database of user past transaction among

the nodes of the network. [35] uses a similar approach, but the storage and update of

user information is performed differently and is determined by the navigation of users.

Both strategies require explicit communication among nodes of the network to maintain

information on past user transactions.

2 Models terminology and notation

We consider a set of n smart tags, passive devices tagging items in a shop (e.g. a

library) or in a museum; every item has a unique integer identifier i ∈ [n], where

[n] = {1, . . . , n}. To make terminology simpler, in the sequel we use the term item

extensively when referring to the smart tags attached to them, since the scenario and

the solutions we consider are oblivious to the nature of tagged items. There are m

users and each user visits the shop over time carrying a smart reader, i.e., a device

able to read and update information stored at smart tags. Every user j enters the

system, visits a subset of the items and then leaves the system. We call this a session.

In general, by visiting an item we mean an active and detectable interaction between

a smart reader and the smart tag tagging an item (e.g., purchasing a tagged item).

The identities of users are not stored, hence multiple visits of the same user to

the shop are not individually tracked. However, we emphasize that information about

multiple visits of the same user is stored in aggregate form at smart tags, as we shall see

further. We assume that a user visits each item at most once during her permanence in

the system, since this captures typical visiting patterns in many cases. The alternative

model in which a user may perform multiple visits to the same item during the same

session can be of interest in different scenarios and can be more easily modelled using

random walks (see, e.g., [19]). Note also that we assume that computation entirely

occurs at the smart reader (e.g., a phone-like device), whereas smart tags only store

the outcome of the computation. For this reason, we think of smart readers as passive

devices (e.g., RFIDs), which are not battery operated. The results we present also

apply to scenarios in which smart tags play an active role in computation. Clearly, in

this case energy issues at smart tags can be no longer neglected.

Modelling user behavior in the system entails two aspects: i) describing the way in

which users select items of potential interest and ii) the order of visits of items that

determines the way in which information about users’ past visits is spread across the

pervasive system.

i) Cluster based item selection. We assume that every user j = 1, . . . ,m has an asso-

ciated vector w(j) = (w1j , . . . , wnj), wij , called user profile in the sequel, describing

j’s potential interest for item i. Note that w(j) is unknown to the system. In par-

ticular, wij ≤ 1 gives the absolute probability that user j will select item i. Hence,Pn
i=1 wij 6= 1 in general. The selection of items visited by user j proceeds as follows:

for every i = 1, . . . n, j visits item i with probability wij , independently of other items

6

and of other users. Note that, by this definition, there is a user-dependent non zero

probability that a user will visit no items.

Following a common assumption in the literature [4,22,24], we assume items are

partitioned into disjoint clusters, C1, C2, . . . , Cs, e.g., corresponding to different top-

ics or categories. We further assume that, for item i and user j, wij satisfies wij =

pkjwi, i ∈ Ck; pkj , the weight of cluster k for user j, denotes the preference of user j

for items in cluster Ck, and wi, the cluster weight of item i, denotes the popularity of

item i within cluster Ck, assumed to be the same for all users (i.e. pkj = pkj′ if j and

j′ belong to the same cluster). Put simply, this means that, if items were books for

example, our model states that different users may have a different degree of preference

for the topic ‘Science fiction’, but their preferences for science-fiction books mainly de-

pend on item popularity. Note that, since pkj is the absolute probability that user j

visits cluster Ck,
Ps
k=1 pkj 6= 1 in general.

We also assume that each item is aware of the cluster it belongs to. Namely we

assume that each smart tag contains, among others, a unique label identifying the

cluster it belongs to. Though a restriction, this assumption is perfectly realistic is

many scenarios, such as the smart poster application we consider or also a bookshop,

an e-shop or a supermarket, where items are (physically or virtually) arranged in groups

defined by some notion of similarity (e.g., topic or use).

ii) Order of visit. We assume a weighted visit model. Namely, if S is the set of possible

items and user j has already visited a subset X of items, then the probability that

the next item visited is i, i ∈ (S − X), is wij/(1 −
P
r∈X wrj) (for items in X this

probability is 0); note that this probability is proportional to wij and depends on the

sum of the total weights of the already visited items. 1 It follows that, the probability

that a user visits a given subset of the items follows a distribution that is a special case

of Fisher’s noncentral hypergeometric distribution2 [18].

Note that, while different users’ visits are independent, the next items visited by a

user clearly depends on the items he/she previously visited induced by her preferences.

To consider the bookshop example, many people are likely to be first attracted by

popular, recently published books in their fields of interest. Experimental evidence

discussed in Subsection 5.3 strongly supports this assumption, at least for the Netflix

recommendation dataset.

Remarks. The above model is intended to strike a balance between simplicity and

soundness. It is clear that this choice brings some simplification with respect to the

scenarios of potential interest. The recommendation based on items’ popularity can be

sensitive to changes of users’ visit patterns over time. Also, assuming that rankings

inside clusters only depend on items’ popularities may be unrealistic in some scenarios.

Furthermore, visit patterns might depend on different (e.g. geometric and physical)

constraints, such as the (physical or virtual) structure of the shop. Finally, in the

description above, we have “artificially” separated the selection and the visit phases,

since this way of looking at the model is useful in the analysis.

1 Note that, consistently,
P

i∈S−X
wij

1−
P

r∈X wrj
= 1.

2 Fisher’s noncentral hypergeometric distribution arises in a “sampling balls from urns”
model, in which each urn has an associated color and contains a number of balls of that color.
Furthermore, balls are extracted according to weights that only depend on their colors. Our
case is the special one in which every urn contains exactly one ball.

7

A few comments about independence of user visits are also in order. An aspect that

is not taken into account in our model is the effect of recommendations themselves on

future user behavior. We note that this is in fact a general problem in collaborative

filtering and other recommendation approaches. Tackling this aspect easily brings to

hardly tractable models. Furthermore, it can be hard to assess the soundness of such

a model on publicly available datasets, since these (such the Netflix one) typically

provide no information about the impact of recommendations possibly provided by the

system on user behavior.

Another important point is that the structure itself of the shop may in many cases

“shape” the probabilistic distributions of user visits, intuitively making them look more

“similar”. Assessing whether this introduces dependences in user visit patterns is in

general hard and problem-dependent. We assume independence for simplicity, at the

same time noting that this does not preclude the possibility of similar trends in user

visiting patterns, induced by the shop structure.

We conclude by noting that experimental evidence on a real Netflix dataset, shows

that at least in the scenario the data refer to, even this simple model captures important

trends. For example, experimental evidence reported in Section 5 supports the model

we consider, showing that a significant correlation exists between the order of users’

visits and items’ popularities within the same movie cluster.

3 Recommendation algorithms

As we have already observed, new items are recommended to the user when she “visits”

an item, e.g., as her smart reader reads the information contained in the smart tag

attached to an item picked up in the shop. As we pointed out earlier, recommendation

is performed locally by the smart reader itself, on the basis of information contained in

the smart tag and of current user’s history information stored in his/her smart reader.

In the rest of this section, we address the following points: i) which is the nature of

the information carried by the user and by smart tags; ii) how this information is

maintained and updated; iii) how it is used to predict a user’s likely preferences; iv)

the rule followed to provide recommendations. We next discuss points i), iii) and iv)

above. Point ii) poses most challenges; it will be briefly outlined in this section and

addressed in detail in Section 4.

User histories and item summaries. We assume that each user carries a vector H(j)

(called user history in the sequel), whose components contain information about items

visited by j earlier in her visit. More in detail, if j visited s at time t, Hs(j) contains

Fs(t), i.e, the number of users that visited s until time t, and the identifier of the cluster

s belongs to. On the other hand, each smart tag also stores aggregate information

about past user visits. More in detail, consider a generic item r belonging to cluster

Ck. At any time t, r stores Fr(t) and, for every other s ∈ Ck, r stores Nsr(t), i.e., the

number of users that visited r after visiting s. As we see more in detail in Section 4,

this information is read by smart readers to update their histories, while r’s summary

is updated as new users visit it. This information is propagated among cluster by

stigmergy, as we discuss more in detail in the next section.

Summarizing, each item maintains a counter of the number of users that visited the

item in the past, its cluster identifier and, in the worst case, a counter for every other

item in its same cluster. We assume each smart tag stores this information, that thus

8

becomes accessible to users as they visit the corresponding items. Note also that this

information can be stored at every item (i.e., its smart tag) using a constant number

of bits. We call the aggregate information stored at an item its summary. Note that

items maintain no private information about specific users.

It is clear that, since each user only visits a small subset of a potentially large

set, H(j) should be stored in compact form in a practical implementation, which we

actually do. We only consider the definition given above to the purpose of simplifying

notation. Furthermore, it is clear that even storing O(n) bits at every tag can be

overly expensive. Streaming techniques [30] can provide the necessary tools to address

these issues. Since this is mainly an implementation aspect, it will be the focus of

future work, our primary goal in this paper being to assess the feasibility of distributed

recommendation algorithms using the models we consider.

Predicting user preferences. Upon visiting item r belonging to cluster Ck, the generic

user j is recommended items of potential interest among those belonging to Ck, so

that recommendations are cluster-based. Recalling the models discussed in Section 2,

in order to achieve this goal it is necessary to estimate wsj = pkjws, for every s ∈ Ck
other than r. Since, for a given user j, pkj is the same for all items in Ck, this amounts

to estimating ws, for every s ∈ Ck. The problem is that user profiles are unknown to

the system and it is unfeasible to estimate them accurately from aggregate information

about past user behavior. Fortunately, in order to provide recommendations, it is not

necessary to know the values of these weights, but only their relative order.

In fact, we show in the next section that user histories and item summaries as

defined above provide enough information for j’s reader device to locally, accurately

and efficiently compute a suitable monotonic function f(·) of cluster weights such that,

for items i, s ∈ Ck, f(wi) ≥ f(ws) if and only if wi ≥ ws. In practice, upon visiting

r, j’s smart reader computes a vector R(r, t), whose i-th entry Ri(r) is j’s estimation

of f(wi) at time t, for every i ∈ Ck. In the rest of this paper, we drop t from R(r, t)

whenever clear from context. Also, we set f(wi) = w2
i

Pm(t)
j=1 p2kj , where m(t) is the

number of users that entered the system up to time t. f(wi) is monotonically increasing

in wi and thus can be used to rank items, as stated by the following lemma, whose

proof is straightforward and therefore omitted.

Lemma 1 For items i and r function f verifies f(wi) ≥ f(wr) if and only if wi ≥ wr.

A crucial aspect is the probabilistic nature of the available information: since the

set of items and the order of visit of a user are random variables, H(j) is the outcome

of a random process. As we see in next section, this implies that R(r) is generated

from statistics over the histories of users that visited r in the past. This implies that

the information available at item r does not allow to exactly compute function f(·);
in fact, one of our contributions are algorithms to compute R(r), so that it is a good

estimate of f(·).

Cluster-based recommendations. The general recommendation algorithm is the obvious

one and is modular with respect to how ranking of items is computed: upon visiting

r belonging to cluster Ck, j’s smart reader recommends the T̂ top ranking items in

R(r) that i) belong to Ck and ii) have not yet been visited by j. The overall behavior

of the smart reader is summarized in Figure 2, with UPDATE(r, j) implementing the

core operation of item ranking.

9

Require: Parameter T̂ : number of recommendations
1: When user j having history H(j) visits item r then
2: R(r) = UPDATE(r, j)
3: Recommend T̂ top elements of R(r) not present in H(j)

Fig. 2 Recommendation algorithm.

In the algorithm above, R(r) is read from the smart tag, updated and then it is

used by the smart reader to recommend T̂ top scoring elements. Then, the updated

version of R(r) is stored back on the smart tag, replacing the older one. The key issue

of how R(r) is maintained and updated is discussed in detail in Section 4.

Remarks. The algorithm described above provides cluster-based recommendations. I.e.,

upon visiting an item, a user is recommended a set of items belonging to the same

cluster as the current one. Of course, the above strategy can be easily generalized to

recommend the top T̂ items, regardless of the cluster they belong to. In this paper,

we focus on the important case in which we recommend items belonging to the same

cluster3. We also note here that the general approach we consider is that of item-

based recommendations, which has proved effective in practice (see for example [16,

25,9] or [4] for a more general survey). Our main goal here is to carry this approach,

appropriately adapted, over to the fully decentralized, stigmergy-based scenario we

envision.

In some cases, it may be interesting to consider strategies that also recommend

items not belonging to the set of the T̂ top ones, so as to diversify the basket of

recommendations and thus increase the chance of serendipity. Proceeding this way

may increase the probability of recommending items that do not match the user profile

and can negatively affect the average quality of the recommendations provided. In

Section 5, we test a simple randomized strategy, which recommends T̂ items, each

with probability proportional to its estimated weight in the user profile. This strategy

essentially reproduces the probabilistic behavior of users in our model.

4 Prediction

We next discuss how R(r) is computed when the user visits the generic item r. Before,

we give some additional notation that will be used in the sequel. In particular, we

denote by m(t) the number of users that entered the system up to time t. Recall that

Fi(t) denotes the number of users that visited item i up to time t. Considered two

items i and r, we set Vir(j) = 1 if j visits i and r in this order, 0 otherwise. Finally,

we define Nir(t) =
Pm(t)
j=1 Vir(j). If the user visits item r at time t, her smart reader

reads r’s summary and then, for every i 6= r it computes R(r), where:

Ri(r) =

„
1 +

Fi(t)

Fr(t)

«
Nir(t).

Here, R(r) is our estimator of f(wi) computed by the user’s smart reader upon

visiting r. Note that Fr(t) and Nir(t) are available at r, while Fi(t) is information

3 Notice that a user may visit items belonging to different clusters over time and thus be
recommended items belonging to different clusters, even if the recommendation strategy is
cluster-based.

10

UPDATE(r, j)

Require: node r, agent j
1: r maintains a vector w(r) of estimates of nodes’ weights
2: Fr = Fr + 1 {A new agent is visiting r}
3: Hr(j) = Fr {j must initialize Hr(j)}
4: for i: 1 . . . n do {and i 6= r}
5: if Hi(j) > 0 then {j visited i}
6: Nir = Nir + 1

7: Ri(r) =
“

1 +
Hi(j)

Fr

”
Nir

8: end if
9: end for
10: return R(r)

Fig. 3 Update algorithm.

carried and provided to r by the visiting agent itself (see Figure 4, also observe that,

by definition, Nir(t) > 0 implies Fr(t) > 0). The estimator above translates into

the implementation of the UPDATE(·, ·) routine described in Figure 3, to dynamically

update R(r) at a generic node r whenever a new agent j visits the node. In particular,

whenever agent j visits node r, r initially updates its local counter (line 2), since it is

receiving a new visit, while j records in its history the number of agents that visited

r prior to its visit (line 3). This information will be provided by j to nodes it visits

in the sequel, if any. Finally (for cycle), for every item i previously visited by j, the

user’s smart reader updates Ri(r) using the information carried by j.

Fig. 4 Reader-tag interaction.

Computational aspects and memory requirements. The core of the computational com-

plexity of the algorithm we propose lies in the update procedure of a smart tag’s in-

formation upon a user’s visit, described in Figure 3. The computational cost is clearly

linear in the number of items for which the tag stores information (for cycle). It should

be noted that this number will in general be smaller (possibly much smaller) than the

total number n of items in the shop. On the other hand, in each iteration of the cycle,

the smart reader is required to perform simple computations, which are compatible

with many state-of-art devices (e.g., smart phones). Another issue (related to the for-

mer) concerns the amount of memory required at each smart tag. In the worst case, this

will be the total number of items in the shop. Here, the limit comes from constraints

imposed by the current state-of-art in passive devices. For example, commercial RFIDs

11

can have capacities as large as 8Kbytes at the price of 15$, but 32KByte devices are

ready for the market [3]. In our approach and without employing data streaming tech-

niques, each smart tag needs to store one vector with n integer components (N∗r) and

the counter Fr (note that R(r) is computed by the smart reader on the fly). Assuming

4 Bytes for each component, this implies the possibility of storing the necessary infor-

mation for about 2000 items using an 8KByte RFID and four times so much in the

forseeable future. In fact, N∗r is a vector of frequency counts and it could be maintained

in small (polylogarithmic) space using streaming techniques [13].

Analysis. The main result of this section is the proof that, over time and for every

i 6= r, Ri(r) provides an increasingly accurate estimation of f(wi) = w2
i

Pm(t)
j=1 p2kj .

In order to analyze the accuracy of the estimator above and the rationale behind, we

assume that, if user j visits item i at time t1 and item r at time t2, no other users visit

i in the interval (t1, t2]. This assumption is only done for the purpose of the analysis

and is not required by our algorithm. In the analysis, it is equivalent to assuming that

users visit the system one at the time, i.e., if user j visits i at time t1 and r at time

t2 > t1, we have m(t1) = m(t2). Note that we are interested in the system behavior

as t grows and more and more users visit the smart shop, so as this approximation

becomes increasingly accurate. The following result holds:

Theorem 1 If i, r belong to the same cluster Ck for some k, Ri(r) becomes an in-

creasingly accurate estimate of f(wi). In particular, accuracy becomes arbitrarily high

as the number of users visiting r increases over time.

Proof of Theorem 1. In the sequel, we set f i(t) = Ri(r), the estimate of f(wi) main-

tained at time t at node r. The proof of Theorem 1 is implied by proving the following

statement:

If i, r ∈ Ck for some k:

f(wi) =

„
1 +

E[Fi(t)]

E[Fr(t)]

«
E[Nir(t)] .

Furthermore, for every r and i belonging to the same cluster Ck, whenever t is large

enough that
Pm(t)
j=1 p2kj ≥

3(wi+wr)
ε2w2

iwr
ln 6
δ with ε ≤ 1/5:

P
ˆ
(1− 3ε)f(wi) ≤ f i(t) ≤ (1 + 4ε)f(wi)

˜
≥ 1− δ.

We first give the following Lemma that will be useful later:

Lemma 2 For every i ∈ Ck: E[Fi(t)] = wi
Pm(t)
j=1 pkj . Furthermore, for every δ,

ε > 0, as soon as t is such that
Pm(t)
j=1 pkj ≥ 3

ε2wi
ln 2
δ :

P[|Fi(t)−E[Fi(t)|] > εE[Fi(t)]] ≤ δ.

Proof We obviously have Fi(t) =
Pm(t)
j=1 Xi(j) and P[Xi(j) = 1] = pkjwi, where

Xi(j) = 1 if user j visits item i, 0 otherwise. This immediately gives E[Fi(t)] =

wi
Pm(t)
j=1 pkj . Furthermore, agents visits are independent of each other. Hence, apply-

ing Chernoff bound to
Pm(t)
j=1 Xi(j) [29] yields the result.

In the sequel, we denote by S(j) the set of items visited by user j during its

permanence in the system. If l ≤ |S(j)|, S<l(j) denotes the subset of the first l − 1

items visited by j. The following lemma holds:

12

Lemma 3 For every S such that {i, r} ⊆ S, with i, r ∈ Ck for some k, for every j:

P[Vir(j) = 1 | S(j) = S] =
wi

wi + wr
.

Proof Denote by Yl(j) the item visited at the l-th step of j’s visit, where Yl(j) = ∅ if
l > |S|. We have:

P[Vir(j) = 1 | S(j) = S] =

|S|−1X
l=1

P[(S<l(j) ∩ {i, r} = ∅) ∧ (Yl(j) = i) | S(j) = S]

=

|S|−1X
l=1

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)] P[S<l(j) ∩ {i, r} = ∅ | S(j) = S] ,

where the first equality follows since, given S(j) = S, with {i, r} ⊆ S, Vir(j) = 1 is

equivalent to stating that i is visited at some step where r has not been visited yet.

On the other hand, denote by Sl(i, j, S) the set of all subsets of S that i) contain l− 1

elements and ii) do not contain {i, j}. We have:

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)]

=
X

W∈Sl(i,r,S)

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) = W)] ·

·P[S<l(j) = W | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)] ,

where the equality follows since S<l(j) = W ∈ Sl(i, j, S) implies S<l(j) ∩ {i, r} = ∅.
On the other hand:

P[Yl(j) = i | (S(j) = S) ∧ (S<l(j) = W)] =
wij

1−
P
f∈W wfj

,

by the definition of the weighted visit process described above. Analogously:

P[Yl(j) = r | (S(j) = S) ∧ (S<l(j) = W)] =
wrj

1−
P
f∈W wfj

,

and

P[Yl(j) = r | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)]

=
X

W∈Sl(i,j,S)

P[Yl(j) = r | (S(j) = S) ∧ (S<l(j) = W)] ·

·P[S<l(j) = W | (S(j) = S) ∧ (S<l(j) ∩ {i, r} = ∅)] .

This implies that the expressions of P[Vir(j) = 1 | S(j) = S] and P[Vri(j) = 1 | S(j) = S]

are the same up to multiplying factors, which are wij = pkjwi and wrj = pkjwr re-

spectively. Therefore:

P[Vir(j) = 1 | S(j) = S]

P[Vri(j) = 1 | S(j) = S]
=
wi
wr

.

Furthermore, P[Vir(j) = 1 | S(j) = S] + P[Vri(j) = 1 | S(j) = S] = 1, since {i, r} ∈ S
and, therefore, (S(j) = S) implies the event (Vir(j) = 1 ∨ Vri(j) = 1). This yields the

result.

13

Notice that, at every node r and at any time t, we are in fact observing the variable

Nir(t) =
Pm(t)
j=1 Vir(j). As to P[Vir(j) = 1 | r ∈ S(j)], we have:

Lemma 4 If i, r ∈ Ck: P[Vir(j) = 1] =
p2kjw

2
iwr

wi+wr
.

Proof We have:

P[Vir(j) = 1 | r ∈ S(j)] =
X

S:r∈S

P[Vir(j) = 1 | S(j) = S] P[S(j) = S | r ∈ S(j)]

=
X

S:{i,r}⊆S

P[Vir(j) = 1 | S(j) = S] P[S(j) = S | r ∈ S(j)]

=
wi

wi + wr

X
S:{i,r}⊆S

P[S(j) = S | r ∈ S(j)] =
wi

wi + wr
P[{i, r} ⊆ S(j) | r ∈ S(j)] =

pkjw
2
i

wi + wr
,

where the second inequality follows since Vir(j) = 0 deterministically if i 6∈ S(j), the

third follows from Lemma 3 and the fifth follows since the events (i ∈ S(j)) and (r ∈
S(j)) are statistically independent. The claim then follows since P[r ∈ S(j)] = pkjwr.

Lemma 5 If i, r ∈ Ck: E[Nir(t)] =
w2

iwr

wi+wr

Pm(t)
j=1 p2kj .

Furthermore: P[|Nir(t)−E[Nir(t)] | > εE[Nir(t)]] ≤ δ, as soon as t is large enough

that
Pm(t)
j=1 pkj ≥

3(wi+wr)
ε2w2

iwr
ln 2
δ :

Proof The first claim follows immediately from Lemma 4. The second claim follows

from a simple application of Chernoff bound [29] to the variable Nir(t).

The following holds:

Lemma 6 If at most 1 agent visits the system at any time t and i, r ∈ Ck for some k:

f(wi) = w2
i

m(t)X
j=1

p2kj =

„
1 +

E[Fi(t)]

E[Fr(t)]

«
E[Nir(t)] .

Proof The proof follows immediately, by observing that E[Fr(t)] /E[Fi(t)] = wr/wi
from Lemma 2 and substituting wr = wiE[Fr(t)] /E[Fi(t)] in the expression of E[Nir(t)]

in Lemma 5.

Lemma 6 shows that the estimator we are using is in fact a simple plug-in estimator

for f(wi). We can finally prove the claim of the theorem, i.e., that the approximation

of f(wi) becomes more and more accurate over time.

In the sequel of this proof we drop t from the notation, since it is understood from

context. We also recall that Fi, Fr and Nir are each the sum of binary independent vari-

ables by the independence of the agents’ visits. Hence, if
Pm(t)
j=1 pkj ≥

3(wi+wr)
ε2w2

iwr
ln 6
δ ,

simple applications of Lemma 2 and Lemma 5 allow to conclude that each of the

following events occurs with probability at most δ/3: i) |Fi − E[Fi] | > εE[Fi]; ii)

|Fr − E[Fr] | > εE[Fr]; iii) |Nir − E[Nir] | > εE[Nir]. Hence, with probability at least

1− δ we have:

f i ≤
„

1 +
1 + ε

1− ε
E[Fi]

E[Fr]

«
(1 + ε)E[Nir] < (1 + 4ε)

„
1 +

E[Fi(t)]

E[Fr(t)]

«
E[Nir(t)] ,

14

where the first inequality follows since we have Nir ≤ (1 + ε)E[Nir], Fi ≤ (1 + ε)E[Fi]

and Fr ≥ (1− ε)E[Fr], while the second inequality holds if ε ≤ 1/5. Analogously:

f i ≥
„

1 +
1− ε
1 + ε

E[Fi]

E[Fr]

«
(1− ε)E[Nir] > (1− 3ε)

„
1 +

E[Fi(t)]

E[Fr(t)]

«
E[Nir(t)] ,

where the first inequality follows from a similar argument as above, while the second

inequality follows from trivial manipulations. Recalling Lemma 6 we complete the proof

of Theorem 1.

Convergence. The result of Theorem 1 also describes the convergence properties of

our algorithms. It is possible to prove that these bounds are asymptotically tight. A

complete analysis is not the purpose of this paper. For the sake of completeness, we

briefly address the simpler aspect of the estimation of E[Fr(t)] at a generic node r.

Note that accurately estimating E[Fr(t)] is crucial for our estimator. It is possible to

prove the following theorem:

Theorem 2 Assume the cluster based model. For every i ∈ Ck and for every 0 < δ <

1, Θ(1
wi

ln 1
δ) visits are necessary and sufficient to estimate E[Fi(t)] accurately.

Proof The definition of our cluster-based model immediately implies that, if x users

visit Ck, then E[Fi(t)] = wix. In particular, every user has an equal probability wi of

visiting the item i, independently of the others. We next prove that

P[|Fi(t)−E[Fi(t)] | ≥ εE[Fi(t)]] = P[Fi(t) ≤ (1− ε)wix] > δ,

whenever x is small enough. The case Fi(t) > (1+ ε)wix is handled similarly. We have:

P[Fi(t) ≤ (1− ε)wix] ≥ P[Fi(t) ≤ b(1− ε)wixc]

=

b(1−ε)wixcX
y=0

x

y

!
(1− wi)x−ywyi >

b(1−ε)wixcX
y=0

(1− wi)x−ywyi

= (1− wi)x
1−

“
wi

1−wi

”b(1−ε)wixc+1

1− wi
1−wi

> (1− wi)x,

where the fourth inequality follows from simple manipulations, while the last inequality

follows whenever wi/(1 − wi) < 1. which is always the case whenever wi < 1/2. This

implies that

P[|Fi(t)−E[Fi(t)] | > εE[Fi(t)]] > (1− wi)x.

Considered any 0 < δ < 1, simple manipulations hows that (1− wi)x ≥ δ, whenever

x ln

„
1 +

wi
1− wi

«
≥ ln

1

δ
.

Now, if we assume wi > 1/2, we have wi/(1−wi) < 1 and the inequality above is true

only if

x
wi

1− wi
≥ ln

1

δ
,

which holds whenever

x ≥ 1− wi
wi

ln
1

δ
,

thus proving the claim.

15

5 Experimental analysis

The experimental part of this paper focuses on assessing the soundness of our model

(Section 5.3) and the effectiveness of our recommendation algorithms (Section 5.4).

As to the second issue, we compared the performance of our solution with a standard

centralized method [16].

5.1 Performance Metrics for Recommendations

We evaluate the performance of the system along two main axes: the ability to infer

a ranking in user preferences and the quality of recommendations. In particular, we

evaluate the former in terms of ranking similarity, while the latter is evaluated in terms

of standard measures of quality used in information retrieval [10], in particular hit ratio,

precision and recall.

Ranking similarity. As described in Section 2, a user’s preferences are described in

terms of a vector of weights (i.e., the user profile), its i-th component measuring the

degree of potential interest of the i-th item to the user. As already remarked in Sec-

tion 3, to the purpose of recommending items we are not interested in estimating the

components of the user profile, but only their relative order, i.e., their ranking. In par-

ticular, if user j visits items r and is recommended a list of items of potential interest,

the quality of recommendation depends on how close the ranking of items estimated by

j’s smart reader is close to the real, unknown one determined by j’s profile. To measure

how close the real and the estimated rankings are, we use a standard measure of the

distance between rankings, i.e., Kendall’s τ coefficient (KT for short). KT measures

the degree of similarity between two rankings and it is defined as τ = 4P/(n(n−1))−1,

where P =
P
i Pi. Here, if x is the i-th item in the first ranking, Pi denotes the number

of items that follow x in both rankings (i.e. actual ranking and estimated one). KT

enjoys the following properties: i) if the agreement between the two rankings is perfect

(i.e., the two rankings are the same) the coefficient has value 1; ii) if the disagreement

between the two rankings is perfect (i.e., one ranking is the reverse of the other) the

coefficient has value -1; iii) for all other arrangements the value lies between -1 and 1,

and increasing values imply increasing agreement between the rankings.

HitRatio(T̂). We recall that user j’s smart reader, recommends the T̂ top items in

R(r) belonging to the same cluster as r and that are not present in H(j). There

is a hit if at least one of the T̂ recommended items will be eventually visited by j.

HitRatio(T̂) is defined as the ratio between the number of hits and the overall number

of recommendations given.

Precision(T̂) and Recall(T̂). Precision and recall are standard measures of the accu-

racy in providing relevant documents. Define by D the set of items (called corpus) and

by Dj the set of relevant items for user j and let (d1, d2, .., dt) be the recommendations

provided by the visited item and (r1, r2, .., rt) where ri = 1 if di ∈ Dj and 0 otherwise.

Then:

16

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Real
Zipf

(a) weight distribution

0

25

50

75

 25 50 75 100

us
er

s
(x

10
00

)

items

Real
Synthetic

(b) visit length

Fig. 5 Validation of our model

recall(T̂) = 1
|Dj |

P
1≤i≤T̂ ri.

I.e., recall is the fraction of all relevant items included in the recommendation. Fur-

thermore:

precision(T̂) = 1
T̂

P
1≤i≤T̂ ri.

I.e., precision is the fraction of the top T̂ recommendations that are actually relevant.

In the following we assume that Dj is the set of items that will be visited in the future

by a user.

5.2 Datasets

We validated our model through experiments on the Netflix movie dataset4. This

dataset is made of 17770 files, one for each movie. Each file stores a set of ratings rep-

resented as a list of tuples <userId, rating, date>, for an overall number of 100480507

ratings made by 480000 users.

In our cluster based model, movies are clusterized by genre. Unfortunately, movies’

genre is not provided by Netflix, but we extracted this information from the MovieLens

dataset5.

5.3 Model Validation

Distribution of weights. In our experiments on cluster-based recommendation, we con-

sidered the Comedy genre, which is one of the most populated clusters. In particular,

we uniformly sampled 100 items out of 744 available comedy movies. Considered an

item i from the above sample, we used its popularity, obtained by dividing the number

of users that visited i by the total number of users, as a proxy for wi. We did not use

users’ ratings directly to compute weights, since we did not observe a clear connection

between the a priori choice of the movie based on its popularity and user’s taste and

the a posteriori rating of the movie. Our model, reasonably fits actual user behavior,

4 Available at http://www.netflixprize.com/.
5 Available at http://www.grouplens.org/node/73

17

if we assume a Zipf’s distribution of the weights, with exponent equal to 1 (see figure

5(a)).

Visit patterns. As far as the order of visits is concerned, we calculated the correlation

coefficient between the cluster weights and the order of visit on real data and we

obtained a value of −0.6. This strongly supports the use of the weighted visit model.

In contrast, we observed that the distribution of the number of visited items per user

predicted by our model using a Zipf’s distribution for item weights differs with respect

to real data (see Figure 5(b)). In fact, Figure 5(b) shows that the number of items

visited also follows a Zipf law. This is due to our simplifying assumption that users

have the same profile within each cluster (though having different preferences for the

same cluster). This aspect could be easily taken into account in the model, by suitably

redefining weights in the cluster-based model. Since the purpose of the probabilistic

model we consider is to infer a ranking in user preferences and not to describe user

behavior in its complexity, we opted for simplicity and neglected this issue.

5.4 Performance

Algorithms. As a benchmark to evaluate the quality of our recommendation algorithm

alg, we compare its performance to that of a centralized recommendation algorithm

deshp and a baseline algorithm rnd that simply recommends an item chosen uniformly

at random among the ones not yet visited by the user. Furthermore we considered

prob, a variant of alg, where instead of recommending the T̂ top items, each item is

recommended with a probability proportional to its weight.

More formally, considering item r and denoted by Qf the first f items already rec-

ommended to user j in the current interaction with r, the f + 1-th recommendation is

for item i /∈ {r}∪H(j)∪Qf with probability

√
Ri(r)P

l/∈{r}∪H(j)∪Qf

√
Rl(r)

6. The possibility

of also selecting items not belonging to the set of the T̂ ones, addresses the issue that

the top T̂ recommendations are probably the most accurate, but they might in part

correspond to very popular or obvious choices. Providing some degree of diversification

may alleviate this potential issue at the cost of a loss in accuracy of prediction. Algo-

rithm (prob) tries to achieve some degree of diversification in a “controlled” way, by

essentially reproducing the probabilistic behavior of users as predicted by our model.

Algorithm (deshp) is a state-of-art centralized recommendation algorithm, based

on conditional probability similarity and it is described in [16, Subsection 4.1]. The

algorithm was implemented adopting the optimizations suggested in [16] and tuning

parameters for best performance under the datasets we consider.

Note that, differently from our algorithm, (deshp) can access the whole dataset of

user histories. This allows to define a similarity value among any pair of items i and j,

such that they were both visited by at least one user. For our decentralized algorithm,

this is not the case. For example, if x users visited first i and then j in this order and

y users visited them in the inverse order, estimating the similarity between i and j

using (deshp) would require knowledge of x + y at both i and j, which is unfeasible

in the scenario we envision. Furthermore, the performance of (deshp) depends by the

6 Recall from Section 3 that H(j) and Ri(r) are respectively j’s history and the i-th com-
ponent of r’s summary and that Ri(r) is proportional to w2

i , up to a factor which is constant
for items belonging to the same cluster.

18

choice of a frequency scaling parameter α [16, formula (2), page 152], which can have

“a significant impact on the recommendation quality” [16, par. 6.2.1.4, page 164]. In

our experiments, we optimized the choice of α for the specific dataset we considered,

but this would be unfeasible in practice in the decentralized scenario we consider. On

the other hand, our model assumes visiting patterns that probabilistically depend on

item popularities within a topic and statistically infers them. This simple model seems

to capture important trends in user behavior that somewhat compensate the lack of

information mentioned above, as experimental evidence suggests.

Ranking similarity. Our first goal is to evaluate the ranking similarity between the

actual cluster weights and the estimated ones by means of KT computed over 10000

users. It is worth noting that, each item i can estimate only a subset Si of the other

item’s weights, depending on the number of users that visited the system and their

visiting patterns. We calculate the KT of each item with cardinality |Si| ≥ 2. As

predicted by our analysis, figure 6 shows that KT tends to one as the number of users

increases and, more importantly, that ranking similarity is significantly high (0.7 for

synthetic and 0.8 for real data) already after collecting statistics over a very small

number of users (i.e. 500). Note that this relatively small number of users, supports

the feasibility of our proposal in practice.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

K
en

da
ll’

s
T

au

Users

synthetic
netflix

Fig. 6 Kendall’s τ : cluster-based, 100 items.

Quality of recommendation. We evaluated hit ratio, precision and recall of our rec-

ommendation algorithm on both a real Netflix dataset and synthetic data generated

according to our model. Each performance index has been computed by averaging the

results over 10 independent runs with 100 items and 10000 users. To generate syn-

thetic inputs, we assume the weighted visit model with item weights within a cluster

distributed according to Zipf’s law; since we are considering the single cluster of comedy

movies, we can assume that pkj , the cluster preference, is one for all users j.

19

Hit Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

rnd
prob

alg
deshp

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

rnd
prob

alg
deshp

Precision

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4

rnd
prob

alg
deshp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4

rnd
prob

alg
deshp

Recall

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

(a) training 100 users (b) training 2000 users

Fig. 7 Netflix dataset. x coordinate is the number of provided recommendations (T̂).

We distinguish two phases in the execution of our algorithms: the training phase,

during which user profiles are computed (for alg and prob, item weights are estimated)

and the recommendation phase, in which recommendations are actually given. In light

of the results above, we limit the training phase to very few users. In particular, we

consider 100 (tp=100) and 2000 (tp=2000) users, so as to better evaluate how the

considered metrics improve as the length of the training phase increases.

For hit ratio, the performance of alg is always sensibly better than rnd and prob and

close to deshp as the length of the training phase increases (see figure 7). HitRatio(T̂)

of alg and deshp on real data is between 4 and 2.5 times better than rnd (up to 2

for prob) when tp=2000. It is interesting to note that the absolute performance of

the algorithms is worse on synthetic data (compare figures 8 and 7). This fact can be

explained considering the average length ṽ of the number of visited items per users.

In fact, ṽ on real data is about 7 while in synthetic data is about the half. Since the

probability of a hit for a user clearly also depends on the number of visits of the user,

it follows that the higher the ṽ , the higher is the hit ratio (similar considerations

can be made for precision and recall). For precision and recall, the performance of

20

our fully decentralized algorithm is very close to the centralized one and both of them

significantly out-perform rnd. The precision of rnd is constant and does not depend on

the number of suggestions provided (i.e. T̂), as it can be easily proved considering that

the random recommendation process is governed by a hypergeometric distribution. The

precision of alg tends to decrease as the number of recommendation increases; this is

expected since, as we observed previously, the accuracy of recommendations depends

on the popularity of the items and increasing the number of recommended items forces

the algorithm to choose items of decreasing popularity, so more unlikely to meet user

expectations. Finally, observe that, as expected prob exhibits performance that are

worse than those of alg and deshp, but still well above the baseline rnd.

Remark. It should be noted that the values of precision and recall that we obtain

on real datasets are indeed relatively high, since they refer to the prediction of really

existing links and not to the judgement given by the user about the quality of the

recommendations provided. In fact, the data we have do not allows us to directly infer

the impact of recommendations on user behavior.

Hit Ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

Recall

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4

rnd
prob

alg
deshp

(a) training 100 users (b) training 2000 users

Fig. 8 Synthetic data. x coordinate is the number of provided recommendations (T̂).

21

6 Discussion

The main contribution of this paper is a model of user behavior that seems to capture

important trends in real user data derived from commercial recommendation systems,

enabling recommendation strategies that are fully decentralized and seem suitable to

meet average user expectations. The proposed model is simple enough as to allow

the statistical estimation of parameters from real user activity logs. The resulting

recommendation strategy achieves a performance that is comparable to that of state-

of-art centralized solutions.

Since available data did not allow to assess the impact of recommendations directly,

results on the quality of recommendation (i.e., precision and recall) have been obtained

in a worsening scenario, i.e., checking the extent to which items that were judged of

potential interest for a user by the system were actually chosen by that user, which of

course leaves out items of potential interest that did not appear in the user log.

A number of issues remain, which will hopefully encourage further research in the

area. As to the model, while physical constraints can be incorporated into the model,

as discussed at the end of Section 2, other aspects to address remain. A first issue

has to do with item popularity. Popularity can indeed change, sometimes rapidly, over

time. A best selling book might be much less popular within the next month, as the

initial wave of interest fades. Proposing simple ageing mechanisms, while keeping the

model simple enough is an interesting point. On the other hand, we have proposed

strategies that work well when items are clustered, as described in Section 2. Extend-

ing the approach of this paper to the general case is an interesting issue. Of course

simple heuristics (e.g., recommending the most popular items) can be easily derived

from our approach, but more sophisticated strategies based on more solid theoretical

foundations are needed. Another important extension is to include the social context

in providing recommendations; social context points on the users community such as

friends, neighbors and colleagues. According to the social dimension, adapting retrieval

aims at leveraging the search according to implied preferences of the users community

rather than just the individual. Social context is used in recommender systems based

on collaborative filtering techniques [33,21] and it will be important to include it in

our approach.

We conclude noting that, as experimental evidence also suggests, our fully decen-

tralized approach is competitive with state-of-the-art centralized solutions and it is

technologically realistic.

7 Acknowledgments

Partially supported by EU STREP Project ICT-215270 FRONTS and by FIRB project

RBIN047MH.

References

1. Amazon web site. url: http://www.amazon.com, 2008.
2. Netflix web site. url: http://www.netflix.com, 2008.
3. Airbus signs contract for high-memory rfid tags. rfid journal. url:

http://www.rfidjournal.com/article/view/7323, 2010.

22

4. Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

5. Noga Alon, Baruch Awerbuch, Yossi Azar, and Boaz Patt-Shamir. Tell me who i am: an
interactive recommendation system. In SPAA ’06: Proceedings of the eighteenth annual
ACM symposium on Parallelism in algorithms and architectures, pages 1–10, New York,
NY, USA, 2006. ACM.

6. Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mark R. Tuttle. Improved rec-
ommendation systems. In SODA, pages 1174–1183. SIAM, 2005.

7. Yossi Azar, Amos Fiat, Anna R. Karlin, Frank McSherry, and Jared Saia. Spectral analysis
of data. In STOC, pages 619–626, 2001.

8. Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni A. Di Caro, Frederick
Ducatelle, Luca M. Gambardella, Niloy Ganguly, Márk Jelasity, Roberto Montemanni,
Alberto Montresor, and Tore Urnes. Design patterns from biology for distributed comput-
ing. ACM Trans. Auton. Adapt. Syst., 1(1):26–66, 2006.

9. Sarwar Badrul, Karypis George, Konstan Joseph, and Reidl John. Item-based collaborative
filtering recommendation algorithms. In WWW ’01: Proceedings of the 10th international
conference on World Wide Web, pages 285–295. ACM, 2001.

10. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, May 1999.

11. Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Distributed collaborative filtering
with domain specialization. In RecSys ’07: Proceedings of the 2007 ACM conference on
Recommender systems, pages 33–40, New York, NY, USA, 2007. ACM.

12. Byron Leite Dantas Bezerra1 and Francisco de Assis Tenorio de Carvalho. Symbolic data
analysis tools for recommendation systems. Knowl. Inf. Syst., 2010, on-line.

13. Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most
frequent items dynamically. ACM Transactions on Database Systems, 30(1):249–278,
2005.

14. Rickard Cöster and Martin Svensson. Incremental collaborative filtering for mobile devices.
In SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing, pages 1102–
1106, New York, NY, USA, 2005. ACM.

15. Christian Decker, Uwe Kubach, and Michael Beigl. Revealing the retail black box by
interaction sensing. In ICDCS Workshops, pages 328–333, 2003.

16. Mukund Deshpande and George Karypis. Item-based top-n recommendation algorithms.
ACM Trans. Inf. Syst., 22(1):143–177, 2004.

17. Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recommenda-
tion systems. In STOC, pages 82–90, 2002.

18. Agner Fog. Sampling methods for wallenius’ and fisher’s noncentral hypergeometric dis-
tributions. Communications in Statistics - Simulation and Computation, 37(2):241 – 257,
2008.

19. Marco Gori and Augusto Pucci. Itemrank: a random-walk based scoring algorithm for
recommender engines. In IJCAI’07: Proceedings of the 20th international joint conference
on Artifical intelligence, pages 2766–2771. Morgan Kaufmann Publishers Inc., 2007.

20. Zan Huang, Daniel Zeng, and Hsinchun Chen. A comparison of collaborative-filtering
recommendation algorithms for E-commerce. IEEE Intelligent Systems, 22(5):68–78, 2007.

21. Cane Wing ki Leung, Stephen Chi fai Chan, and Fu-Lai Chung. A collaborative filtering
framework based on fuzzy association rules and multiple-level similarity. Knowl. Inf. Syst.,
10(3):357–381, 2006.

22. Jon M. Kleinberg and Mark Sandler. Convergent algorithms for collaborative filtering. In
ACM Conference on Electronic Commerce, pages 1–10. ACM, 2003.

23. Panos Kourouthanasis, Diomidis Spinellis, Giorgos Roussos, and Giorgos Giaglis. Intelli-
gent cokes and diapers: MyGrocer ubiquitous computing environment. In First Interna-
tional Mobile Business Conference, pages 150–172, July 2002.

24. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Recom-
mendation systems: A probabilistic analysis. J. Comput. Syst. Sci., 63(1):42–61, 2001.

25. Greg Linden, Brent Smith, and Jeremy York. Industry report: Amazon.com recommenda-
tions: Item-to-item collaborative filtering. IEEE Distributed Systems Online, 4(1), 2003.

26. Marco Mamei and Franco Zambonelli. Pervasive pheromone-based interaction with rfid
tags. ACM Trans. Auton. Adapt. Syst., 2(2):4, 2007.

27. Carl D. Meyer, editor. Matrix analysis and applied linear algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

23

28. Bradley N. Miller, Istvan Albert, Shyong K. Lam, Joseph A. Konstan, and John Riedl.
Movielens unplugged: experiences with an occasionally connected recommender system.
In Intelligent User Interfaces, pages 263–266. ACM, 2003.

29. Michael Mitzenmacher and Eli Upfal. Probability and Computing : Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, January 2005.

30. Muthukrishnan. Data streams: Algorithms and applications. In Foundations and Trends
in Theoretical Computer Science, Now Publishers or World Scientific, volume 1. 2005.

31. Saharon Rosset, Claudia Perlich, and Bianca Zadrozny. Ranking-based evaluation of re-
gression models. Knowl. Inf. Syst., 12(3):331–353, 2007.

32. M. Roth and S. Wicker. Termite: ad-hoc networking with stigmergy. Global Telecommu-
nications Conference, 2003. GLOBECOM ’03. IEEE, 5:2937–2941 vol.5, Dec. 2003.

33. Lynda Tamine-Lechani, Mohand Boughanem, and Mariam Daoudontact. Evaluation of
contextual information retrieval effectiveness: overview of issues and research. Knowl. Inf.
Syst., 2009, on-line.

34. W. Wade. A grocery cart that holds bread, butter, and preferences. New York Times,
Jan(16), 2003.

35. J. Wang, J. Pouwelse, R. Lagendijk, and M. J. T. Reinders. Distributed collaborative
filtering for peer-to-peer file sharing systems. In 21st Annual ACM Symposium on Applied
Computing, pages 1026–1030, 2006.

36. Bo Xie, Peng Han, Fan Yang, Ruimin Shen, Hua-Jun Zeng, and Zheng Chen. DCFLA:
A distributed collaborative-filtering neighbor-locating algorithm. Information Sciences,
177(6):1349–1363, 2007.

